These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 34131380)

  • 1. The Influence of X-Ray Computed Tomography Acquisition Parameters on Image Quality and Probability of Detection of Additive Manufacturing Defects.
    Kim FH; Pintar AL; Moylan SP; Garboczi EJ
    J Manuf Sci Eng; 2019 Nov; 141(11):. PubMed ID: 34131380
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterizing the effects of laser control in laser powder bed fusion on near-surface pore formation via combined analysis of in-situ melt pool monitoring and X-ray computed tomography.
    Kim FH; Yeung H; Garboczi EJ
    Addit Manuf; 2021 Dec; 48(A):. PubMed ID: 36733468
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of the Effect of Artificial Internal Defects on the Tensile Behavior of Laser Powder Bed Fusion 17-4 Stainless Steel Samples: Simultaneous Tensile Testing and X-Ray Computed Tomography.
    Kim FH; Moylan SP; Phan TQ; Garboczi EJ
    Exp Mech; 2020; 60(7):. PubMed ID: 36619901
    [TBL] [Abstract][Full Text] [Related]  

  • 4. X-ray computed tomography evaluations of additive manufactured multimaterial composites.
    Curto M; Kao AP; Keeble W; Tozzi G; Barber AH
    J Microsc; 2022 Mar; 285(3):131-143. PubMed ID: 34057229
    [TBL] [Abstract][Full Text] [Related]  

  • 5. X-ray tomography for the advancement of laser powder bed fusion additive manufacturing.
    DU Plessis A
    J Microsc; 2022 Mar; 285(3):121-130. PubMed ID: 32496595
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of pore structure in cobalt chrome additively manufactured parts using X-ray computed tomography and three-dimensional image analysis.
    Kim FH; Moylan SP; Garboczi EJ; Slotwinski JA
    Addit Manuf; 2017; 17():. PubMed ID: 32166065
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Benchmarking of Nondestructive Testing for Additive Manufacturing.
    Duarte VR; Rodrigues TA; Machado MA; Pragana JPM; Pombinha P; Coutinho L; Silva CMA; Miranda RM; Goodwin C; Huber DE; Oliveira JP; Santos TG
    3D Print Addit Manuf; 2021 Aug; 8(4):263-270. PubMed ID: 36654833
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrasonic testing of thick and thin Inconel 625 alloys manufactured by laser powder bed fusion.
    Allam A; Alfahmi O; Patel H; Sugino C; Harding M; Ruzzene M; Erturk A
    Ultrasonics; 2022 Sep; 125():106780. PubMed ID: 35716606
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of Metal Powders Used for Additive Manufacturing.
    Slotwinski JA; Garboczi EJ; Stutzman PE; Ferraris CF; Watson SS; Peltz MA
    J Res Natl Inst Stand Technol; 2014; 119():460-93. PubMed ID: 26601040
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Standard method for microCT-based additive manufacturing quality control 4: Metal powder analysis.
    du Plessis A; Sperling P; Beerlink A; du Preez WB; le Roux SG
    MethodsX; 2018; 5():1336-1345. PubMed ID: 30406023
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of Manufacturing Defects on Mechanical Behavior of the Laser Powder Bed Fused Invar 36 Alloy: In-Situ X-ray Computed Tomography Studies.
    Yang S; Yang Q; Qu Z; Wei K
    Materials (Basel); 2023 Apr; 16(8):. PubMed ID: 37109793
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Applications of X-ray computed tomography for the evaluation of biomaterial-mediated bone regeneration in critical-sized defects.
    Fernández MP; Witte F; Tozzi G
    J Microsc; 2020 Mar; 277(3):179-196. PubMed ID: 31701530
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of Powder Deposition on Powder Bed and Specimen Properties.
    Beitz S; Uerlich R; Bokelmann T; Diener A; Vietor T; Kwade A
    Materials (Basel); 2019 Jan; 12(2):. PubMed ID: 30669274
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiple Sensor Detection of Process Phenomena in Laser Powder Bed Fusion.
    Lane B; Whitenton E; Moylan S
    Proc SPIE Int Soc Opt Eng; 2016; 986104():. PubMed ID: 32165779
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Continuous Comprehensive Monitoring of Melt Pool Morphology Under Realistic Printing Scenarios with Laser Powder Bed Fusion.
    Vallabh CKP; Zhao X
    3D Print Addit Manuf; 2023 Feb; 10(1):101-110. PubMed ID: 36998791
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep Learning Applied to Defect Detection in Powder Spreading Process of Magnetic Material Additive Manufacturing.
    Chen HY; Lin CC; Horng MH; Chang LK; Hsu JH; Chang TW; Hung JC; Lee RM; Tsai MC
    Materials (Basel); 2022 Aug; 15(16):. PubMed ID: 36013797
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nano-Additive Manufacturing and Non-Destructive Testing of Nanocomposites.
    She Y; Tang J; Wang C; Wang Z; Huang Z; Yang Y
    Nanomaterials (Basel); 2023 Oct; 13(20):. PubMed ID: 37887891
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Eddy Current Sensors Optimization for Defect Detection in Parts Fabricated by Laser Powder Bed Fusion.
    Saddoud R; Sergeeva-Chollet N; Darmon M
    Sensors (Basel); 2023 Apr; 23(9):. PubMed ID: 37177537
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Progress toward the Definition of X-ray Computed Tomography Accuracy in the Characterization of Polymer-Based Lattice Structures.
    Gallardo D; Díaz LC; Albajez JA; Yagüe-Fabra JA
    Polymers (Basel); 2024 May; 16(10):. PubMed ID: 38794612
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid Alloy Development of Extremely High-Alloyed Metals Using Powder Blends in Laser Powder Bed Fusion.
    Ewald S; Kies F; Hermsen S; Voshage M; Haase C; Schleifenbaum JH
    Materials (Basel); 2019 May; 12(10):. PubMed ID: 31130684
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.