These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 34131633)

  • 21. Oncogenic Calreticulin Induces Immune Escape by Stimulating TGFβ Expression and Regulatory T-cell Expansion in the Bone Marrow Microenvironment.
    Schmidt D; Endres C; Hoefflin R; Andrieux G; Zwick M; Karantzelis N; Staehle HF; Vinnakota JM; Duquesne S; Mozaffari Jovein M; Pfeifer D; Becker H; Blazar BR; Zähringer A; Duyster J; Brummer T; Boerries M; Baumeister J; Shoumariyeh K; Li J; Green AR; Heidel FH; Tirosh I; Pahl HL; Leimkühler N; Köhler N; de Toledo MAS; Koschmieder S; Zeiser R
    Cancer Res; 2024 Sep; 84(18):2985-3003. PubMed ID: 38885318
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Alterations of Signaling Pathways in Essential Thrombocythemia with Calreticulin Mutation.
    Hui W; Zhang W; Liu C; Wan S; Sun W; Su L
    Cancer Manag Res; 2021; 13():6231-6238. PubMed ID: 34393515
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Thrombopoietin-independent Megakaryocyte Differentiation of Hematopoietic Progenitor Cells from Patients with Myeloproliferative Neoplasms.
    Thompson-Peach CAL; Foßelteder J; Reinisch A; Thomas D
    Bio Protoc; 2023 Jan; 13(2):e4592. PubMed ID: 36789162
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Activation of the thrombopoietin receptor by mutant calreticulin in CALR-mutant myeloproliferative neoplasms.
    Araki M; Yang Y; Masubuchi N; Hironaka Y; Takei H; Morishita S; Mizukami Y; Kan S; Shirane S; Edahiro Y; Sunami Y; Ohsaka A; Komatsu N
    Blood; 2016 Mar; 127(10):1307-16. PubMed ID: 26817954
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Changing concepts of diagnostic criteria of myeloproliferative disorders and the molecular etiology and classification of myeloproliferative neoplasms: from Dameshek 1950 to Vainchenker 2005 and beyond.
    Michiels JJ; Berneman Z; Schroyens W; De Raeve H
    Acta Haematol; 2015; 133(1):36-51. PubMed ID: 25116092
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Frequencies, Laboratory Features, and Granulocyte Activation in Chinese Patients with CALR-Mutated Myeloproliferative Neoplasms.
    Guo H; Chen X; Tian R; Chang J; Li J; Tan Y; Xu Z; Ren F; Zhao J; Pan J; Zhang N; Wang X; He J; Yang W; Wang H
    PLoS One; 2015; 10(9):e0138250. PubMed ID: 26375990
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Murine prolactin-like protein E synergizes with human thrombopoietin to stimulate expansion of human megakaryocytes and their precursors.
    Lefebvre P; Lin J; Linzer DI; Cohen I
    Exp Hematol; 2001 Jan; 29(1):51-8. PubMed ID: 11164105
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Simultaneous screening for JAK2 and calreticulin gene mutations in myeloproliferative neoplasms with high resolution melting.
    Matsumoto N; Mori S; Hasegawa H; Sasaki D; Mori H; Tsuruda K; Imanishi D; Imaizumi Y; Hata T; Kaku N; Kosai K; Uno N; Miyazaki Y; Yanagihara K
    Clin Chim Acta; 2016 Nov; 462():166-173. PubMed ID: 27693531
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Mutation Profile of Calreticulin in Patients with Myeloproliferative Neoplasms and Acute Leukemia.
    Wang J; Hao J; He N; Ji C; Ma D
    Turk J Haematol; 2016 Sep; 33(3):180-6. PubMed ID: 26377485
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mice with Calr mutations homologous to human CALR mutations only exhibit mild thrombocytosis.
    Shide K; Kameda T; Kamiunten A; Oji A; Ozono Y; Sekine M; Honda A; Kitanaka A; Akizuki K; Tahira Y; Nakamura K; Hidaka T; Kubuki Y; Abe H; Miike T; Iwakiri H; Tahara Y; Sueta M; Hasuike S; Yamamoto S; Nagata K; Ikawa M; Shimoda K
    Blood Cancer J; 2019 Mar; 9(4):42. PubMed ID: 30926777
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The role of the thrombopoietin receptor MPL in myeloproliferative neoplasms: recent findings and potential therapeutic applications.
    Vainchenker W; Plo I; Marty C; Varghese LN; Constantinescu SN
    Expert Rev Hematol; 2019 Jun; 12(6):437-448. PubMed ID: 31092065
    [No Abstract]   [Full Text] [Related]  

  • 32. Endogenous megakaryocytic colony formation and thrombopoietin sensitivity of megakaryocytic progenitor cells are useful to distinguish between essential thrombocythemia and reactive thrombocytosis.
    Mi JQ; Blanc-Jouvan F; Wang J; Sotto MF; Cousin F; Castinel A; Chauvet M; Sotto JJ; Polack B; Mossuz P
    J Hematother Stem Cell Res; 2001 Jun; 10(3):405-9. PubMed ID: 11454315
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The role of calreticulin mutations in myeloproliferative neoplasms.
    Araki M; Komatsu N
    Int J Hematol; 2020 Feb; 111(2):200-205. PubMed ID: 31848992
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization of CD34+ hematopoietic progenitor cells in JAK2V617F and CALR-mutated myeloproliferative neoplasms.
    Angona A; Alvarez-Larrán A; Bellosillo B; Longarón R; Camacho L; Fernández-Rodríguez MC; Pairet S; Besses C
    Leuk Res; 2016 Sep; 48():11-5. PubMed ID: 27427771
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rapid, low cost and sensitive detection of Calreticulin mutations by a PCR based amplicon length differentiation assay for diagnosis of myeloproliferative neoplasms.
    Trung NT; Quyen DT; Hoan NX; Giang DP; Trang TTH; Velavan TP; Bang MH; Song LH
    BMC Med Genet; 2019 Jun; 20(1):115. PubMed ID: 31248375
    [TBL] [Abstract][Full Text] [Related]  

  • 36. CAL2 Immunohistochemical Staining Accurately Identifies CALR Mutations in Myeloproliferative Neoplasms.
    Nomani L; Bodo J; Zhao X; Durkin L; Loghavi S; Hsi ED
    Am J Clin Pathol; 2016 Oct; 146(4):431-8. PubMed ID: 27686170
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Clinicopathological differences exist between CALR- and JAK2-mutated myeloproliferative neoplasms despite a similar molecular landscape: data from targeted next-generation sequencing in the diagnostic laboratory.
    Agarwal R; Blombery P; McBean M; Jones K; Fellowes A; Doig K; Forsyth C; Westerman DA
    Ann Hematol; 2017 May; 96(5):725-732. PubMed ID: 28161773
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Autonomous megakaryocyte growth in essential thrombocythemia and idiopathic myelofibrosis is not related to a c-mpl mutation or to an autocrine stimulation by Mpl-L.
    Taksin AL; Couedic JP; Dusanter-Fourt I; Massé A; Giraudier S; Katz A; Wendling F; Vainchenker W; Casadevall N; Debili N
    Blood; 1999 Jan; 93(1):125-39. PubMed ID: 9864154
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hypersensitivity of megakaryocyte progenitors to thrombopoietin in essential thrombocythemia.
    Kawasaki H; Nakano T; Kohdera U; Kobayashi Y
    Am J Hematol; 2001 Nov; 68(3):194-7. PubMed ID: 11754402
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Calreticulin exon 9 mutations in myeloproliferative neoplasms.
    Ha JS; Kim YK
    Ann Lab Med; 2015 Jan; 35(1):22-7. PubMed ID: 25553276
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.