These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
211 related articles for article (PubMed ID: 34131696)
1. Predicting MHC class I binder: existing approaches and a novel recurrent neural network solution. Jiang L; Yu H; Li J; Tang J; Guo Y; Guo F Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34131696 [TBL] [Abstract][Full Text] [Related]
2. Deep convolutional neural networks for pan-specific peptide-MHC class I binding prediction. Han Y; Kim D BMC Bioinformatics; 2017 Dec; 18(1):585. PubMed ID: 29281985 [TBL] [Abstract][Full Text] [Related]
3. Improved prediction of MHC class I binders/non-binders peptides through artificial neural network using variable learning rate: SARS corona virus, a case study. Soam SS; Bhasker B; Mishra BN Adv Exp Med Biol; 2011; 696():223-9. PubMed ID: 21431562 [TBL] [Abstract][Full Text] [Related]
4. Benchmarking predictions of MHC class I restricted T cell epitopes in a comprehensively studied model system. Paul S; Croft NP; Purcell AW; Tscharke DC; Sette A; Nielsen M; Peters B PLoS Comput Biol; 2020 May; 16(5):e1007757. PubMed ID: 32453790 [TBL] [Abstract][Full Text] [Related]
5. MHC-BPS: MHC-binder prediction server for identifying peptides of flexible lengths from sequence-derived physicochemical properties. Cui J; Han LY; Lin HH; Tang ZQ; Jiang L; Cao ZW; Chen YZ Immunogenetics; 2006 Aug; 58(8):607-13. PubMed ID: 16832638 [TBL] [Abstract][Full Text] [Related]
6. A hybrid approach for predicting promiscuous MHC class I restricted T cell epitopes. Bhasin M; Raghava GP J Biosci; 2007 Jan; 32(1):31-42. PubMed ID: 17426378 [TBL] [Abstract][Full Text] [Related]
7. A comprehensive review and performance evaluation of bioinformatics tools for HLA class I peptide-binding prediction. Mei S; Li F; Leier A; Marquez-Lago TT; Giam K; Croft NP; Akutsu T; Smith AI; Li J; Rossjohn J; Purcell AW; Song J Brief Bioinform; 2020 Jul; 21(4):1119-1135. PubMed ID: 31204427 [TBL] [Abstract][Full Text] [Related]
8. Automated benchmarking of peptide-MHC class I binding predictions. Trolle T; Metushi IG; Greenbaum JA; Kim Y; Sidney J; Lund O; Sette A; Peters B; Nielsen M Bioinformatics; 2015 Jul; 31(13):2174-81. PubMed ID: 25717196 [TBL] [Abstract][Full Text] [Related]
9. POPI: predicting immunogenicity of MHC class I binding peptides by mining informative physicochemical properties. Tung CW; Ho SY Bioinformatics; 2007 Apr; 23(8):942-9. PubMed ID: 17384427 [TBL] [Abstract][Full Text] [Related]
10. Toward the prediction of class I and II mouse major histocompatibility complex-peptide-binding affinity: in silico bioinformatic step-by-step guide using quantitative structure-activity relationships. Hattotuwagama CK; Doytchinova IA; Flower DR Methods Mol Biol; 2007; 409():227-45. PubMed ID: 18450004 [TBL] [Abstract][Full Text] [Related]
11. Systematically benchmarking peptide-MHC binding predictors: From synthetic to naturally processed epitopes. Zhao W; Sher X PLoS Comput Biol; 2018 Nov; 14(11):e1006457. PubMed ID: 30408041 [TBL] [Abstract][Full Text] [Related]
12. Prediction of MHC class I binding peptides using profile motifs. Reche PA; Glutting JP; Reinherz EL Hum Immunol; 2002 Sep; 63(9):701-9. PubMed ID: 12175724 [TBL] [Abstract][Full Text] [Related]
13. High-Throughput Prediction of MHC Class I and II Neoantigens with MHCnuggets. Shao XM; Bhattacharya R; Huang J; Sivakumar IKA; Tokheim C; Zheng L; Hirsch D; Kaminow B; Omdahl A; Bonsack M; Riemer AB; Velculescu VE; Anagnostou V; Pagel KA; Karchin R Cancer Immunol Res; 2020 Mar; 8(3):396-408. PubMed ID: 31871119 [TBL] [Abstract][Full Text] [Related]
14. Improved pan-specific MHC class I peptide-binding predictions using a novel representation of the MHC-binding cleft environment. Carrasco Pro S; Zimic M; Nielsen M Tissue Antigens; 2014 Feb; 83(2):94-100. PubMed ID: 24447175 [TBL] [Abstract][Full Text] [Related]
15. Gapped sequence alignment using artificial neural networks: application to the MHC class I system. Andreatta M; Nielsen M Bioinformatics; 2016 Feb; 32(4):511-7. PubMed ID: 26515819 [TBL] [Abstract][Full Text] [Related]
16. Derivation of an amino acid similarity matrix for peptide: MHC binding and its application as a Bayesian prior. Kim Y; Sidney J; Pinilla C; Sette A; Peters B BMC Bioinformatics; 2009 Nov; 10():394. PubMed ID: 19948066 [TBL] [Abstract][Full Text] [Related]
17. A community resource benchmarking predictions of peptide binding to MHC-I molecules. Peters B; Bui HH; Frankild S; Nielson M; Lundegaard C; Kostem E; Basch D; Lamberth K; Harndahl M; Fleri W; Wilson SS; Sidney J; Lund O; Buus S; Sette A PLoS Comput Biol; 2006 Jun; 2(6):e65. PubMed ID: 16789818 [TBL] [Abstract][Full Text] [Related]
18. DeepNetBim: deep learning model for predicting HLA-epitope interactions based on network analysis by harnessing binding and immunogenicity information. Yang X; Zhao L; Wei F; Li J BMC Bioinformatics; 2021 May; 22(1):231. PubMed ID: 33952199 [TBL] [Abstract][Full Text] [Related]
19. Prediction of Major Histocompatibility Complex Binding with Bilateral and Variable Long Short Term Memory Networks. Jiang L; Tang J; Guo F; Guo Y Biology (Basel); 2022 Jun; 11(6):. PubMed ID: 35741369 [TBL] [Abstract][Full Text] [Related]
20. Pan-specific MHC class I predictors: a benchmark of HLA class I pan-specific prediction methods. Zhang H; Lundegaard C; Nielsen M Bioinformatics; 2009 Jan; 25(1):83-9. PubMed ID: 18996943 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]