These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 34131748)

  • 1. Genomic Basis of Transcriptome Dynamics in Rice under Field Conditions.
    Kashima M; Sakamoto RL; Saito H; Ohkubo S; Tezuka A; Deguchi A; Hashida Y; Kurita Y; Iwayama K; Adachi S; Nagano AJ
    Plant Cell Physiol; 2021 Nov; 62(9):1436-1445. PubMed ID: 34131748
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic mechanisms underlying yield potential in the rice high-yielding cultivar Takanari, based on reciprocal chromosome segment substitution lines.
    Takai T; Ikka T; Kondo K; Nonoue Y; Ono N; Arai-Sanoh Y; Yoshinaga S; Nakano H; Yano M; Kondo M; Yamamoto T
    BMC Plant Biol; 2014 Nov; 14():295. PubMed ID: 25404368
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of Chromosome Segment Substitution Lines (CSSLs) Derived from Guangxi Wild Rice (
    Yuan R; Zhao N; Usman B; Luo L; Liao S; Qin Y; Nawaz G; Li R
    Genes (Basel); 2020 Aug; 11(9):. PubMed ID: 32842674
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Developing high throughput genotyped chromosome segment substitution lines based on population whole-genome re-sequencing in rice (Oryza sativa L.).
    Xu J; Zhao Q; Du P; Xu C; Wang B; Feng Q; Liu Q; Tang S; Gu M; Han B; Liang G
    BMC Genomics; 2010 Nov; 11():656. PubMed ID: 21106060
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chromosomal regions with quantitative trait loci controlling cadmium concentration in brown rice (Oryza sativa).
    Ishikawa S; Ae N; Yano M
    New Phytol; 2005 Nov; 168(2):345-50. PubMed ID: 16219074
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development and characterization of chromosome segment substitution lines derived from Oryza rufipogon in the genetic background of O. sativa spp. indica cultivar 9311.
    Qiao W; Qi L; Cheng Z; Su L; Li J; Sun Y; Ren J; Zheng X; Yang Q
    BMC Genomics; 2016 Aug; 17():580. PubMed ID: 27507407
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genomic adaptation of flowering-time genes during the expansion of rice cultivation area.
    Itoh H; Wada KC; Sakai H; Shibasaki K; Fukuoka S; Wu J; Yonemaru JI; Yano M; Izawa T
    Plant J; 2018 Jun; 94(5):895-909. PubMed ID: 29570873
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An expression quantitative trait loci-guided co-expression analysis for constructing regulatory network using a rice recombinant inbred line population.
    Wang J; Yu H; Weng X; Xie W; Xu C; Li X; Xiao J; Zhang Q
    J Exp Bot; 2014 Mar; 65(4):1069-79. PubMed ID: 24420573
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic Dissection of Seed Dormancy using Chromosome Segment Substitution Lines in Rice (
    Yuan S; Wang Y; Zhang C; He H; Yu S
    Int J Mol Sci; 2020 Feb; 21(4):. PubMed ID: 32079255
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-wide expression quantitative trait locus studies facilitate isolation of causal genes controlling panicle structure.
    Wang F; Yano K; Nagamatsu S; Inari-Ikeda M; Koketsu E; Hirano K; Aya K; Matsuoka M
    Plant J; 2020 Jul; 103(1):266-278. PubMed ID: 32072700
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcriptomic analyses of rice (Oryza sativa) genes and non-coding RNAs under nitrogen starvation using multiple omics technologies.
    Shin SY; Jeong JS; Lim JY; Kim T; Park JH; Kim JK; Shin C
    BMC Genomics; 2018 Jul; 19(1):532. PubMed ID: 30005603
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Construction of chromosome segment substitution lines of Dongxiang common wild rice (Oryza rufipogon Griff.) in the background of the japonica rice cultivar Nipponbare (Oryza sativa L.).
    Ma X; Han B; Tang J; Zhang J; Cui D; Geng L; Zhou H; Li M; Han L
    Plant Physiol Biochem; 2019 Nov; 144():274-282. PubMed ID: 31593900
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genomic regions responsible for seminal and crown root lengths identified by 2D & 3D root system image analysis.
    Uga Y; Assaranurak I; Kitomi Y; Larson BG; Craft EJ; Shaff JE; McCouch SR; Kochian LV
    BMC Genomics; 2018 Apr; 19(1):273. PubMed ID: 29678154
    [TBL] [Abstract][Full Text] [Related]  

  • 14. eQTLs play critical roles in regulating gene expression and identifying key regulators in rice.
    Liu C; Zhu X; Zhang J; Shen M; Chen K; Fu X; Ma L; Liu X; Zhou C; Zhou DX; Wang G
    Plant Biotechnol J; 2022 Dec; 20(12):2357-2371. PubMed ID: 36087348
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative transcriptome sequencing of tolerant rice introgression line and its parents in response to drought stress.
    Huang L; Zhang F; Zhang F; Wang W; Zhou Y; Fu B; Li Z
    BMC Genomics; 2014 Nov; 15(1):1026. PubMed ID: 25428615
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Precise estimation of genomic regions controlling lodging resistance using a set of reciprocal chromosome segment substitution lines in rice.
    Ookawa T; Aoba R; Yamamoto T; Ueda T; Takai T; Fukuoka S; Ando T; Adachi S; Matsuoka M; Ebitani T; Kato Y; Mulsanti IW; Kishii M; Reynolds M; Piñera F; Kotake T; Kawasaki S; Motobayashi T; Hirasawa T
    Sci Rep; 2016 Jul; 6():30572. PubMed ID: 27465821
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Whole genome sequencing data of
    Kajiya-Kanegae H; Yabe S; Yoshida H; Ebana K; Yamasaki M; Nakagawa H; Iwata H
    Data Brief; 2019 Dec; 27():104546. PubMed ID: 31673576
    [No Abstract]   [Full Text] [Related]  

  • 18. Dissecting the genetic basis for the effect of rice chalkiness, amylose content, protein content, and rapid viscosity analyzer profile characteristics on the eating quality of cooked rice using the chromosome segment substitution line population across eight environments.
    Liu X; Wan X; Ma X; Wan J
    Genome; 2011 Jan; 54(1):64-80. PubMed ID: 21217807
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic Elucidation for Response of Flowering Time to Ambient Temperatures in Asian Rice Cultivars.
    Hori K; Saisho D; Nagata K; Nonoue Y; Uehara-Yamaguchi Y; Kanatani A; Shu K; Hirayama T; Yonemaru JI; Fukuoka S; Mochida K
    Int J Mol Sci; 2021 Jan; 22(3):. PubMed ID: 33498523
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selection of Transcripts Affecting Initial Growth Rate of Rice Backcrossed Inbred Lines Using RNA Sequencing Data.
    Fukuda A; Hirose T; Aoki N; Kondo S; Yonekura M; Kataoka T; Ohto C; Nagano AJ
    Front Plant Sci; 2018; 9():1880. PubMed ID: 30631334
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.