These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 34131770)
1. The smaller the frequency-to-place mismatch the better the hearing outcomes in cochlear implant recipients? Mertens G; Van de Heyning P; Vanderveken O; Topsakal V; Van Rompaey V Eur Arch Otorhinolaryngol; 2022 Apr; 279(4):1875-1883. PubMed ID: 34131770 [TBL] [Abstract][Full Text] [Related]
3. Frequency-to-Place Mismatch: Characterizing Variability and the Influence on Speech Perception Outcomes in Cochlear Implant Recipients. Canfarotta MW; Dillon MT; Buss E; Pillsbury HC; Brown KD; O'Connell BP Ear Hear; 2020; 41(5):1349-1361. PubMed ID: 32205726 [TBL] [Abstract][Full Text] [Related]
4. Comparison of Tonotopic and Default Frequency Fitting for Speech Understanding in Noise in New Cochlear Implantees: A Prospective, Randomized, Double-Blind, Cross-Over Study. Creff G; Lambert C; Coudert P; Pean V; Laurent S; Godey B Ear Hear; 2024 Jan-Feb 01; 45(1):35-52. PubMed ID: 37823850 [TBL] [Abstract][Full Text] [Related]
5. Cochlear Implant: Analysis of the Frequency-to-Place Mismatch with the Table-Based Software OTOPLAN® and Its Influence on Hearing Performance. Dessard L; Gersdorff G; Ivanovik N; Zoca-Assadi M; Nopp P; Camby S; Lefebvre PP Audiol Neurootol; 2024; 29(3):239-245. PubMed ID: 38190811 [TBL] [Abstract][Full Text] [Related]
6. Influence of Age at Cochlear Implantation and Frequency-to-Place Mismatch on Early Speech Recognition in Adults. Canfarotta MW; O'Connell BP; Buss E; Pillsbury HC; Brown KD; Dillon MT Otolaryngol Head Neck Surg; 2020 Jun; 162(6):926-932. PubMed ID: 32178574 [TBL] [Abstract][Full Text] [Related]
7. Association Between Flat-Panel Computed Tomographic Imaging-Guided Place-Pitch Mapping and Speech and Pitch Perception in Cochlear Implant Users. Jiam NT; Gilbert M; Cooke D; Jiradejvong P; Barrett K; Caldwell M; Limb CJ JAMA Otolaryngol Head Neck Surg; 2019 Feb; 145(2):109-116. PubMed ID: 30477013 [TBL] [Abstract][Full Text] [Related]
8. Comparison of Two Place-Based Mapping Procedures on Masked Sentence Recognition as a Function of Electrode Array Angular Insertion Depth and Presence of Acoustic Low-Frequency Information: A Simulation Study. Dillon MT; Buss E; Johnson AD; Canfarotta MW; O'Connell BP Audiol Neurootol; 2023; 28(6):478-487. PubMed ID: 37482054 [TBL] [Abstract][Full Text] [Related]
9. Effects of tonotopic matching and spatial cues on segregation of competing speech in simulations of bilateral cochlear implants. Thomas M; Willis S; Galvin JJ; Fu QJ PLoS One; 2022; 17(7):e0270759. PubMed ID: 35788202 [TBL] [Abstract][Full Text] [Related]
10. Place dependent stimulation rates improve pitch perception in cochlear implantees with single-sided deafness. Rader T; Döge J; Adel Y; Weissgerber T; Baumann U Hear Res; 2016 Sep; 339():94-103. PubMed ID: 27374479 [TBL] [Abstract][Full Text] [Related]
11. Correlation Between Cochlear Length, Insertion Angle, and Tonotopic Mismatch for MED-EL FLEX28 Electrode Arrays. Dutrieux N; Quatre R; Péan V; Schmerber S Otol Neurotol; 2022 Jan; 43(1):48-55. PubMed ID: 34538852 [TBL] [Abstract][Full Text] [Related]
12. Preservation of hearing in cochlear implant surgery: advantages of combined electrical and acoustical speech processing. Gantz BJ; Turner C; Gfeller KE; Lowder MW Laryngoscope; 2005 May; 115(5):796-802. PubMed ID: 15867642 [TBL] [Abstract][Full Text] [Related]
13. Effects of electrode array length on frequency-place mismatch and speech perception with cochlear implants. Venail F; Mathiolon C; Menjot de Champfleur S; Piron JP; Sicard M; Villemus F; Vessigaud MA; Sterkers-Artieres F; Mondain M; Uziel A Audiol Neurootol; 2015; 20(2):102-11. PubMed ID: 25678235 [TBL] [Abstract][Full Text] [Related]
14. Benefits to Speech Perception in Noise From the Binaural Integration of Electric and Acoustic Signals in Simulated Unilateral Deafness. Ma N; Morris S; Kitterick PT Ear Hear; 2016; 37(3):248-59. PubMed ID: 27116049 [TBL] [Abstract][Full Text] [Related]
15. Speech recognition under conditions of frequency-place compression and expansion. Baskent D; Shannon RV J Acoust Soc Am; 2003 Apr; 113(4 Pt 1):2064-76. PubMed ID: 12703717 [TBL] [Abstract][Full Text] [Related]
16. Development of an Algorithm for Correct Placement of the Basal Electrode Contact in the Context of Anatomy-Based Cochlear Implantation: A Proof of Concept. Spahn B; Voelker J; Müller-Graff FT; Engert J; Bauer D; Kurz A; Hagen R; Neun T; Zabler S; Rak K Audiol Neurootol; 2024; 29(5):398-407. PubMed ID: 38479363 [TBL] [Abstract][Full Text] [Related]
17. Comparison of Place-versus-Pitch Mismatch between a Perimodiolar and Lateral Wall Cochlear Implant Electrode Array in Patients with Single-Sided Deafness and a Cochlear Implant. Peters JPM; Bennink E; van Zanten GA Audiol Neurootol; 2019; 24(1):38-48. PubMed ID: 30995658 [TBL] [Abstract][Full Text] [Related]
18. Frequency-to-Place Mismatch Impacts Cochlear Implant Quality of Life, But Not Speech Recognition. Sturm JJ; Ma C; McRackan TR; Schvartz-Leyzac KC Laryngoscope; 2024 Jun; 134(6):2898-2905. PubMed ID: 38214299 [TBL] [Abstract][Full Text] [Related]
19. Searching for the Sound of a Cochlear Implant: Evaluation of Different Vocoder Parameters by Cochlear Implant Users With Single-Sided Deafness. Karoui C; James C; Barone P; Bakhos D; Marx M; Macherey O Trends Hear; 2019; 23():2331216519866029. PubMed ID: 31533581 [TBL] [Abstract][Full Text] [Related]
20. Early prelingual auditory development and speech perception at 1-year follow-up in Mandarin-speaking children after cochlear implantation. Zheng Y; Soli SD; Tao Y; Xu K; Meng Z; Li G; Wang K; Zheng H Int J Pediatr Otorhinolaryngol; 2011 Nov; 75(11):1418-26. PubMed ID: 21893351 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]