BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 3413186)

  • 41. Morphometric evaluation of zymogen granule membrane transfer to Golgi cisternae following exocytosis in pancreatic acinar cells from suckling newborn rats.
    Carneiro SM; Sesso A
    J Submicrosc Cytol; 1987 Jan; 19(1):19-33. PubMed ID: 3560291
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Multiple pathways of exocytosis, endocytosis, and membrane recycling: validation of a Golgi route.
    Farquhar MG
    Fed Proc; 1983 May; 42(8):2407-13. PubMed ID: 6404654
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Phosphomannosyl receptor binding is localized in vesicles separated by free-flow electrophoresis from rough endoplasmic reticulum preparations of rat liver.
    Minnifield N; Safranski K; Morré DJ
    Prog Clin Biol Res; 1988; 270():417-9. PubMed ID: 2970647
    [No Abstract]   [Full Text] [Related]  

  • 44. Connections between the various elements of the cis- and mid-compartments of the Golgi apparatus of early rat spermatids.
    Clermont Y; Rambourg A; Hermo L
    Anat Rec; 1994 Dec; 240(4):469-80. PubMed ID: 7879899
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Analytical study of microsomes and isolated subcellular membranes from rat liver. VII. Distribution of protein-bound sialic acid.
    Amar-Costesec A
    J Cell Biol; 1981 Apr; 89(1):62-9. PubMed ID: 7228901
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Identification of the 16 degrees C compartment of the endoplasmic reticulum in rat liver and cultured hamster kidney cells.
    Morré DJ; Minnifield N; Paulik M
    Biol Cell; 1989; 67(1):51-60. PubMed ID: 2605373
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Similarities of the Golgi apparatus membrane and the plasma membrane in rat liver cells.
    Hodson S; Brenchley G
    J Cell Sci; 1976 Jan; 20(1):167-82. PubMed ID: 175074
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Aqueous two-phase partition applied to the isolation of plasma membranes and Golgi apparatus from cultured mammalian cells.
    Morré DM; Morre DJ
    J Chromatogr B Biomed Sci Appl; 2000 Jun; 743(1-2):377-87. PubMed ID: 10942308
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The use of continuous preparative free-flow electrophoresis for dissociating cell fractions and isolation of membranous components.
    Hannig K; Heidrich HG
    Methods Enzymol; 1974; 31():746-61. PubMed ID: 4371743
    [No Abstract]   [Full Text] [Related]  

  • 50. Preparative free-flow electrophoresis for the isolation of membrane, organelle and cell fractions from rabbit kidney cortex.
    Heidrich HG; Dew ME
    Curr Probl Clin Biochem; 1976; 6():108-12. PubMed ID: 1001001
    [No Abstract]   [Full Text] [Related]  

  • 51. Applications of aqueous two-phase partition to isolation of membranes from plants: a periodic NADH oxidase activity as a marker for right side-out plasma membrane vesicles.
    Morré DJ; Morré DM
    J Chromatogr B Biomed Sci Appl; 2000 Jun; 743(1-2):369-76. PubMed ID: 10942307
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Organelle-specific antibodies: production of antibodies to Golgi subcompartments.
    Saraste J; Bronson M; Palade GE; Farquhar MG
    Prog Clin Biol Res; 1988; 270():129-39. PubMed ID: 3413155
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Rapid analytical and preparative isolation of functional endosomes by free flow electrophoresis.
    Marsh M; Schmid S; Kern H; Harms E; Male P; Mellman I; Helenius A
    J Cell Biol; 1987 Apr; 104(4):875-86. PubMed ID: 3031085
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Exocytic transport vesicles generated in vitro from the trans-Golgi network carry secretory and plasma membrane proteins.
    Salamero J; Sztul ES; Howell KE
    Proc Natl Acad Sci U S A; 1990 Oct; 87(19):7717-21. PubMed ID: 2217204
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Isolation of plasma and vacuole membranes from green leaves by preparative free-flow electrophoresis.
    Auderset G; Sandelius AS; Penel C; Greppin H; Morré DJ
    Prog Clin Biol Res; 1988; 270():285-7. PubMed ID: 3413169
    [No Abstract]   [Full Text] [Related]  

  • 56. Subcellular fractionation of rat liver.
    Fleischer S; Kervina M
    Methods Enzymol; 1974; 31():6-41. PubMed ID: 4138239
    [No Abstract]   [Full Text] [Related]  

  • 57. Subfractionation of liver membrane preparations by specific ligand-induced density perturbation.
    Brown AE; Elovson J
    Biochim Biophys Acta; 1980 Apr; 597(2):247-62. PubMed ID: 6989398
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Cell-free transfer of membrane lipids. Evidence for lipid processing.
    Moreau P; Morré DJ
    J Biol Chem; 1991 Mar; 266(7):4329-33. PubMed ID: 1999422
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Free Flow Zonal Electrophoresis for Fractionation of Plant Membrane Compartments Prior to Proteomic Analysis.
    Barkla BJ
    Methods Mol Biol; 2018; 1696():1-12. PubMed ID: 29086393
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Free-flow electrophoresis for preparation of plant membranes.
    Sandelius AS; Morré DJ
    Prog Clin Biol Res; 1988; 270():281-4. PubMed ID: 3413168
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.