BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

573 related articles for article (PubMed ID: 34132193)

  • 21. A complete allosteric map of a GTPase switch in its native cellular network.
    Mathy CJP; Mishra P; Flynn JM; Perica T; Mavor D; Bolon DNA; Kortemme T
    Cell Syst; 2023 Mar; 14(3):237-246.e7. PubMed ID: 36801015
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Breaking symmetry: mutations engineered into R67 dihydrofolate reductase, a D2 symmetric homotetramer possessing a single active site pore.
    Smiley RD; Stinnett LG; Saxton AM; Howell EE
    Biochemistry; 2002 Dec; 41(52):15664-75. PubMed ID: 12501195
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Functional significance of evolving protein sequence in dihydrofolate reductase from bacteria to humans.
    Liu CT; Hanoian P; French JB; Pringle TH; Hammes-Schiffer S; Benkovic SJ
    Proc Natl Acad Sci U S A; 2013 Jun; 110(25):10159-64. PubMed ID: 23733948
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Selective peptide inhibitors of bifunctional thymidylate synthase-dihydrofolate reductase from Toxoplasma gondii provide insights into domain-domain communication and allosteric regulation.
    Landau MJ; Sharma H; Anderson KS
    Protein Sci; 2013 Sep; 22(9):1161-73. PubMed ID: 23813474
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Engineering allosteric control to an unregulated enzyme by transfer of a regulatory domain.
    Cross PJ; Allison TM; Dobson RC; Jameson GB; Parker EJ
    Proc Natl Acad Sci U S A; 2013 Feb; 110(6):2111-6. PubMed ID: 23345433
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Correlating allostery with rigidity.
    Rader AJ; Brown SM
    Mol Biosyst; 2011 Feb; 7(2):464-71. PubMed ID: 21060909
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A second-site mutation at phenylalanine-137 that increases catalytic efficiency in the mutant aspartate-27----serine Escherichia coli dihydrofolate reductase.
    Howell EE; Booth C; Farnum M; Kraut J; Warren MS
    Biochemistry; 1990 Sep; 29(37):8561-9. PubMed ID: 2271539
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Role of Protein-Ligand Contacts in Allosteric Regulation of the Escherichia coli Catabolite Activator Protein.
    Townsend PD; Rodgers TL; Glover LC; Korhonen HJ; Richards SA; Colwell LJ; Pohl E; Wilson MR; Hodgson DR; McLeish TC; Cann MJ
    J Biol Chem; 2015 Sep; 290(36):22225-35. PubMed ID: 26187469
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Increased substrate affinity in the Escherichia coli L28R dihydrofolate reductase mutant causes trimethoprim resistance.
    Abdizadeh H; Tamer YT; Acar O; Toprak E; Atilgan AR; Atilgan C
    Phys Chem Chem Phys; 2017 May; 19(18):11416-11428. PubMed ID: 28422217
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dihydrofolate reductase from Bacillus subtilis and its artificial derivatives: expression, purification, and characterization.
    Iwakura M; Tanaka T
    J Biochem; 1992 May; 111(5):638-42. PubMed ID: 1639761
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A parameterized two-domain thermodynamic model explains diverse mutational effects on protein allostery.
    Liu Z; Gillis TG; Raman S; Cui Q
    Elife; 2024 Jun; 12():. PubMed ID: 38836839
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Light-regulated allosteric switch enables temporal and subcellular control of enzyme activity.
    Shaaya M; Fauser J; Zhurikhina A; Conage-Pough JE; Huyot V; Brennan M; Flower CT; Matsche J; Khan S; Natarajan V; Rehman J; Kota P; White FM; Tsygankov D; Karginov AV
    Elife; 2020 Sep; 9():. PubMed ID: 32965214
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Systems Approaches to Understanding and Designing Allosteric Proteins.
    Raman S
    Biochemistry; 2018 Jan; 57(4):376-382. PubMed ID: 29235352
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The magnitude of the allosteric conformational transition of aspartate transcarbamylase is altered by mutations.
    LiCata VJ; Burz DS; Moerke NJ; Allewell NM
    Biochemistry; 1998 Dec; 37(50):17381-5. PubMed ID: 9860853
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Allostery Frustrates the Experimentalist.
    Gianni S; Jemth P
    J Mol Biol; 2023 Feb; 435(4):167934. PubMed ID: 36586463
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Deep mutational scanning of Pneumocystis jirovecii dihydrofolate reductase reveals allosteric mechanism of resistance to an antifolate.
    Rouleau FD; Dubé AK; Gagnon-Arsenault I; Dibyachintan S; Pageau A; Després PC; Lagüe P; Landry CR
    PLoS Genet; 2024 Apr; 20(4):e1011252. PubMed ID: 38683847
    [TBL] [Abstract][Full Text] [Related]  

  • 37. 'Locked-on' and 'locked-off' signal transduction mutations in the periplasmic domain of the Escherichia coli NarQ and NarX sensors affect nitrate- and nitrite-dependent regulation by NarL and NarP.
    Chiang RC; Cavicchioli R; Gunsalus RP
    Mol Microbiol; 1997 Jun; 24(5):1049-60. PubMed ID: 9220011
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tales of Dihydrofolate Binding to R67 Dihydrofolate Reductase.
    Duff MR; Chopra S; Strader MB; Agarwal PK; Howell EE
    Biochemistry; 2016 Jan; 55(1):133-45. PubMed ID: 26637016
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Determination of regions in the dihydrofolate reductase structure that interact with the molecular chaperonin GroEL.
    Clark AC; Hugo E; Frieden C
    Biochemistry; 1996 May; 35(18):5893-901. PubMed ID: 8639551
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microsecond molecular dynamics simulations and dynamic network analysis provide understanding of the allosteric inactivation of GSK3β induced by the L343R mutation.
    Li J; Fu Q; Liang Y; Cheng B; Li X
    J Mol Model; 2019 Apr; 25(5):111. PubMed ID: 30949773
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 29.