These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 34132284)
41. Hierarchical TiO2/C nanocomposite monoliths with a robust scaffolding architecture, mesopore-macropore network and TiO2-C heterostructure for high-performance lithium ion batteries. Huang HB; Yang Y; Chen LH; Wang Y; Huang SZ; Tao JW; Ma XT; Hasan T; Li Y; Xu Y; Su BL Nanoscale; 2016 Jun; 8(21):10928-37. PubMed ID: 26864500 [TBL] [Abstract][Full Text] [Related]
42. Vapor-Solid Reaction Growth of Rutile TiO Lee TY; Lee CY; Chiu HT ACS Omega; 2019 Oct; 4(14):16217-16225. PubMed ID: 31592488 [TBL] [Abstract][Full Text] [Related]
43. Direct Synthesis of Carbon-Doped TiO2-Bronze Nanowires as Anode Materials for High Performance Lithium-Ion Batteries. Goriparti S; Miele E; Prato M; Scarpellini A; Marras S; Monaco S; Toma A; Messina GC; Alabastri A; De Angelis F; Manna L; Capiglia C; Zaccaria RP ACS Appl Mater Interfaces; 2015 Nov; 7(45):25139-46. PubMed ID: 26492841 [TBL] [Abstract][Full Text] [Related]
44. Interpenetrated Networks between Graphitic Carbon Infilling and Ultrafine TiO Zheng W; Yan Z; Dai Y; Du N; Jiang X; Dai H; Li X; He G ACS Appl Mater Interfaces; 2017 Jun; 9(24):20491-20500. PubMed ID: 28569503 [TBL] [Abstract][Full Text] [Related]
45. One-Pot Fabrication of Hierarchical Nanosheet-Based TiO2 -Carbon Hollow Microspheres for Anode Materials of High-Rate Lithium-Ion Batteries. Jin Z; Yang M; Wang J; Gao H; Lu Y; Wang G Chemistry; 2016 Apr; 22(17):6031-6. PubMed ID: 26970239 [TBL] [Abstract][Full Text] [Related]
46. Boosting Lithium-Ion Transport Kinetics by Increasing the Local Lithium-Ion Concentration Gradient in Composite Anodes of Lithium-Ion Batteries. Wu W; Sun Z; He Q; Shi X; Ge X; Cheng J; Wang J; Zhang Z ACS Appl Mater Interfaces; 2021 Mar; 13(12):14752-14758. PubMed ID: 33729763 [TBL] [Abstract][Full Text] [Related]
47. Bottom-up synthesis of nitrogen-doped porous carbon scaffolds for lithium and sodium storage. Lu H; Chen R; Hu Y; Wang X; Wang Y; Ma L; Zhu G; Chen T; Tie Z; Jin Z; Liu J Nanoscale; 2017 Feb; 9(5):1972-1977. PubMed ID: 28102408 [TBL] [Abstract][Full Text] [Related]
48. Encapsulation of Fe Li Y; Liang T; Wang R; He B; Gong Y; Wang H ACS Appl Mater Interfaces; 2019 May; 11(21):19115-19122. PubMed ID: 31062955 [TBL] [Abstract][Full Text] [Related]
49. Multichannel Porous TiO Wu Y; Jiang Y; Shi J; Gu L; Yu Y Small; 2017 Jun; 13(22):. PubMed ID: 28418215 [TBL] [Abstract][Full Text] [Related]
50. An electrochemical investigation of rutile TiO2 microspheres anchored by nanoneedle clusters for sodium storage. Zhang Y; Pu X; Yang Y; Zhu Y; Hou H; Jing M; Yang X; Chen J; Ji X Phys Chem Chem Phys; 2015 Jun; 17(24):15764-70. PubMed ID: 26016643 [TBL] [Abstract][Full Text] [Related]
51. Li4Ti5O12/TiO2 hollow spheres composed nanoflakes with preferentially exposed Li4Ti5O12 (011) facets for high-rate lithium ion batteries. Jiang YM; Wang KX; Wu XY; Zhang HJ; Bartlett BM; Chen JS ACS Appl Mater Interfaces; 2014 Nov; 6(22):19791-6. PubMed ID: 25333628 [TBL] [Abstract][Full Text] [Related]
52. Nafion/Titanium Dioxide-Coated Lithium Anode for Stable Lithium-Sulfur Batteries. Jiang S; Lu Y; Lu Y; Han M; Li H; Tao Z; Niu Z; Chen J Chem Asian J; 2018 May; 13(10):1379-1385. PubMed ID: 29582589 [TBL] [Abstract][Full Text] [Related]
53. Flower-like Bi Kumari P; Awasthi K; Agarwal S; Ichikawa T; Kumar M; Jain A RSC Adv; 2019 Sep; 9(51):29549-29555. PubMed ID: 35531550 [TBL] [Abstract][Full Text] [Related]
55. 3D Hollow Porous Spherical Architecture Packed by Iron-Borate Amorphous Nanoparticles as High-Performance Anode for Lithium-Ion Batteries. Yu M; Bian X; Liu S; Yuan C; Yang Y; Ge X; Guan R; Wang C ACS Appl Mater Interfaces; 2019 Jul; 11(28):25254-25263. PubMed ID: 31276377 [TBL] [Abstract][Full Text] [Related]
56. Facile synthesis of loaf-like ZnMn₂O₄ nanorods and their excellent performance in Li-ion batteries. Bai Z; Fan N; Sun C; Ju Z; Guo C; Yang J; Qian Y Nanoscale; 2013 Mar; 5(6):2442-7. PubMed ID: 23403451 [TBL] [Abstract][Full Text] [Related]
57. 3D ordered mesoporous TiO Zhang D; Liu L; Zhang Y; Wu H; Zheng Y; Gao G; Ding S Nanotechnology; 2019 Jun; 30(23):235401. PubMed ID: 30776784 [TBL] [Abstract][Full Text] [Related]
58. Core-shell NiFe2O4@TiO2 nanorods: an anode material with enhanced electrochemical performance for lithium-ion batteries. Huang G; Zhang F; Du X; Wang J; Yin D; Wang L Chemistry; 2014 Aug; 20(35):11214-9. PubMed ID: 25044261 [TBL] [Abstract][Full Text] [Related]
59. Eco-friendly utilization of sawdust: Ionic liquid-modified biochar for enhanced Li Yu Y; Liu S; Wang W; Shang Q; Han J; Liu C; Tian Z; Chen J Sci Total Environ; 2021 Nov; 794():148688. PubMed ID: 34218152 [TBL] [Abstract][Full Text] [Related]
60. A New Anode for Lithium-Ion Batteries Based on Single-Walled Carbon Nanotubes and Graphene: Improved Performance through a Binary Network Design. Ren J; Ren RP; Lv YK Chem Asian J; 2018 May; 13(9):1223-1227. PubMed ID: 29524325 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]