These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 34132535)

  • 1. Tunability of Interactions between the Core and Shell in Rattle-Type Particles Studied with Liquid-Cell Electron Microscopy.
    Welling TAJ; Watanabe K; Grau-Carbonell A; de Graaf J; Nagao D; Imhof A; van Huis MA; van Blaaderen A
    ACS Nano; 2021 Jul; 15(7):11137-11149. PubMed ID: 34132535
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Frequency-controlled electrophoretic mobility of a particle within a porous, hollow shell.
    Welling TAJ; Grau-Carbonell A; Watanabe K; Nagao D; de Graaf J; van Huis MA; van Blaaderen A
    J Colloid Interface Sci; 2022 Dec; 627():761-773. PubMed ID: 35878466
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design, synthesis and applications of core-shell, hollow core, and nanorattle multifunctional nanostructures.
    El-Toni AM; Habila MA; Labis JP; ALOthman ZA; Alhoshan M; Elzatahry AA; Zhang F
    Nanoscale; 2016 Feb; 8(5):2510-31. PubMed ID: 26766598
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rattle-type colloidal crystals composed of spherical hollow particles containing an anisotropic, movable core.
    Watanabe K; Nagao D; Ishii H; Konno M
    Langmuir; 2015 May; 31(19):5306-10. PubMed ID: 25918953
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Compression of hard core-soft shell nanoparticles at liquid-liquid interfaces: influence of the shell thickness.
    Rauh A; Rey M; Barbera L; Zanini M; Karg M; Isa L
    Soft Matter; 2016 Dec; 13(1):158-169. PubMed ID: 27515818
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanorod and nanoparticle shells in concentration gradient core-shell lithium oxides for rechargeable lithium batteries.
    Yoon SJ; Myung ST; Noh HJ; Lu J; Amine K; Sun YK
    ChemSusChem; 2014 Dec; 7(12):3295-303. PubMed ID: 25044175
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rattle-type carbon-alumina core-shell spheres: synthesis and application for adsorption of organic dyes.
    Zhou J; Tang C; Cheng B; Yu J; Jaroniec M
    ACS Appl Mater Interfaces; 2012 Apr; 4(4):2174-9. PubMed ID: 22458371
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-step coating of mesoporous SiO
    Xie X; van Huis MA; van Blaaderen A
    Nanoscale; 2021 Jun; 13(24):10925-10932. PubMed ID: 34132311
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sub-2-μm seeded growth mesoporous thin shell particles for high-performance liquid chromatography: Synthesis, functionalisation and characterisation.
    Langsi VK; Ashu-Arrah BA; Glennon JD
    J Chromatogr A; 2015 Jul; 1402():17-26. PubMed ID: 26028512
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Morphology and electronic structure of the oxide shell on the surface of iron nanoparticles.
    Wang C; Baer DR; Amonette JE; Engelhard MH; Antony J; Qiang Y
    J Am Chem Soc; 2009 Jul; 131(25):8824-32. PubMed ID: 19496564
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diffusion, sedimentation, and rheology of concentrated suspensions of core-shell particles.
    Abade GC; Cichocki B; Ekiel-Jeżewska ML; Nägele G; Wajnryb E
    J Chem Phys; 2012 Mar; 136(10):104902. PubMed ID: 22423856
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monodisperse Rattle-Structured Gold Nanorod-Mesoporous Silica Nanoparticles Core-Shell as Sulforaphane Carrier and its Sustained-Release Property.
    Manjili HK; Ma'mani L; Naderi-Manesh H
    Drug Res (Stuttg); 2018 Sep; 68(9):504-513. PubMed ID: 29660748
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of Shell Thickness on the Colloidal Stability of Magnetic Core-Shell Particle Suspensions.
    Neville F; Moreno-Atanasio R
    Front Chem; 2018; 6():201. PubMed ID: 29922646
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of rattle-type TiO2/SiO2 core/shell particles with both high photoactivity and UV-shielding property.
    Ren Y; Chen M; Zhang Y; Wu L
    Langmuir; 2010 Jul; 26(13):11391-6. PubMed ID: 20536170
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Core-shell particles in rotating electric and magnetic fields: Designing tunable interactions via particle engineering.
    Komarov KA; Mantsevich VN; Yurchenko SO
    J Chem Phys; 2021 Aug; 155(8):084903. PubMed ID: 34470364
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surfactant-assisted selective etching strategy for generation of rattle-like mesoporous silica nanoparticles.
    Liu X; Jiao Z; Song T; Wu M; Zhang H
    J Colloid Interface Sci; 2017 Mar; 490():497-504. PubMed ID: 27918987
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Water oxidation catalysis by birnessite@iron oxide core-shell nanocomposites.
    Elmaci G; Frey CE; Kurz P; Zümreoğlu-Karan B
    Inorg Chem; 2015 Mar; 54(6):2734-41. PubMed ID: 25710557
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanometer precise adjustment of the silver shell thickness during automated Au-Ag core-shell nanoparticle synthesis in micro fluid segment sequences.
    Knauer A; Eisenhardt A; Krischok S; Koehler JM
    Nanoscale; 2014 May; 6(10):5230-8. PubMed ID: 24687008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of Magnetic Rattle-Type Silica with Controllable Magnetite and Tunable Size by Pre-Shell-Post-Core Method.
    Chen X; Tan L; Meng X
    J Nanosci Nanotechnol; 2016 Mar; 16(3):3003-8. PubMed ID: 27455750
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.