These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
227 related articles for article (PubMed ID: 34132712)
1. Natural biomaterial sarcosine as an interfacial layer enables inverted organic solar cells to exhibit over 16.4% efficiency. Liu M; Xu Y; Gao Z; Zhang C; Yu J; Wang J; Ma X; Hu H; Yin H; Zhang F; Man B; Sun Q Nanoscale; 2021 Jul; 13(25):11128-11137. PubMed ID: 34132712 [TBL] [Abstract][Full Text] [Related]
2. Improving the Efficiency of Organic Solar Cells with Methionine as Electron Transport Layer. Xu Y; Zhou H; Duan P; Shan B; Xu W; Wang J; Liu M; Zhang F; Sun Q Molecules; 2022 Sep; 27(19):. PubMed ID: 36234900 [TBL] [Abstract][Full Text] [Related]
3. Over 15.7% Efficiency of Ternary Organic Solar Cells by Employing Two Compatible Acceptors with Similar LUMO Levels. Hu Z; Yang L; Gao W; Gao J; Xu C; Zhang X; Wang Z; Tang W; Yang C; Zhang F Small; 2020 Apr; 16(17):e2000441. PubMed ID: 32243095 [TBL] [Abstract][Full Text] [Related]
4. High-Performance Inverted Organic Solar Cells via the Incorporation of Thickness-Insensitive and Low-Temperature-Annealed Nonconjugated Polymers as Electron Transport Materials. Nie H; Busireddy MR; Shih HM; Ko CW; Chen JT; Chang CC; Hsu CS ACS Appl Mater Interfaces; 2023 Jan; 15(1):1718-1725. PubMed ID: 36548433 [TBL] [Abstract][Full Text] [Related]
5. Co Zhang Y; Zhao X; Han X; Li Y; Zhang Z; Li T; Xing J; Zuo X; Lin Y Langmuir; 2021 Mar; 37(10):3173-3179. PubMed ID: 33657318 [TBL] [Abstract][Full Text] [Related]
6. Polymerized Naphthalimide Derivatives as Remarkable Electron-Transport Layers for Inverted Organic Solar Cells. Wang L; Chen Y; Tao W; Wang K; Peng Z; Zheng X; Xiang C; Zhang J; Huang M; Zhao B Macromol Rapid Commun; 2022 Nov; 43(22):e2200119. PubMed ID: 35467054 [TBL] [Abstract][Full Text] [Related]
7. Annealing-Insensitive, Alcohol-Processed MoO Song C; Huang X; Zhan T; Ding L; Li Y; Xue X; Lin X; Peng H; Cai P; Duan C; Chen J ACS Appl Mater Interfaces; 2022 Sep; 14(36):40851-40861. PubMed ID: 36044804 [TBL] [Abstract][Full Text] [Related]
8. One key issue in characterization of organic solar cells with solution processed interfacial layers. Gao J; An Q; Zhang M; Miao J; Ma X; Hu Z; Wang J; Zhang F Phys Chem Chem Phys; 2019 Mar; 21(10):5790-5795. PubMed ID: 30801601 [TBL] [Abstract][Full Text] [Related]
9. In-Doped ZnO Electron Transport Layer for High-Efficiency Ultrathin Flexible Organic Solar Cells. Liu X; Ji Y; Xia Z; Zhang D; Cheng Y; Liu X; Ren X; Liu X; Huang H; Zhu Y; Yang X; Liao X; Ren L; Tan W; Jiang Z; Lu J; McNeill C; Huang W Adv Sci (Weinh); 2024 Oct; 11(37):e2402158. PubMed ID: 38923280 [TBL] [Abstract][Full Text] [Related]
10. Interfacial and Bulk Nanostructures Control Loss of Charges in Organic Solar Cells. Naveed HB; Zhou K; Ma W Acc Chem Res; 2019 Oct; 52(10):2904-2915. PubMed ID: 31577121 [TBL] [Abstract][Full Text] [Related]
11. Embedding plasmonic gold nanoparticles in a ZnO layer enhanced the performance of inverted organic solar cells based on an indacenodithieno[3,2- Waketola AG; Pfukwa C; Neethling P; Bosman G; Genene Z; Wang E; Mammo W; Hone FG; Tegegne NA RSC Adv; 2023 May; 13(24):16175-16184. PubMed ID: 37260711 [TBL] [Abstract][Full Text] [Related]
12. Doping of ZnO Electron Transport Layer with Organic Dye Molecules to Enhance Efficiency and Photo-Stability of the Non-Fullerene Organic Solar Cells. Hu L; Han L; Quan J; Wu F; Li W; Zhou D; Zhang L; Jin Y; Yin X; Song J; Su Z; Li Z; Chen L Small; 2024 May; 20(21):e2310125. PubMed ID: 38100305 [TBL] [Abstract][Full Text] [Related]
13. Interface control of semiconducting metal oxide layers for efficient and stable inverted polymer solar cells with open-circuit voltages over 1.0 volt. Yin Z; Zheng Q; Chen SC; Cai D ACS Appl Mater Interfaces; 2013 Sep; 5(18):9015-25. PubMed ID: 23984993 [TBL] [Abstract][Full Text] [Related]
14. Achieving over 18 % Efficiency Organic Solar Cell Enabled by a ZnO-Based Hybrid Electron Transport Layer with an Operational Lifetime up to 5 Years. Li S; Fu Q; Meng L; Wan X; Ding L; Lu G; Lu G; Yao Z; Li C; Chen Y Angew Chem Int Ed Engl; 2022 Aug; 61(34):e202207397. PubMed ID: 35765215 [TBL] [Abstract][Full Text] [Related]
15. Manipulation of Zinc Oxide with Zirconium Doping for Efficient Inverted Organic Solar Cells. Song X; Liu G; Gao W; Di Y; Yang Y; Li F; Zhou S; Zhang J Small; 2021 Feb; 17(7):e2006387. PubMed ID: 33475246 [TBL] [Abstract][Full Text] [Related]
16. Fullerene/Non-fullerene Alloy for High-Performance All-Small-Molecule Organic Solar Cells. Privado M; Guijarro FG; de la Cruz P; Singhal R; Langa F; Sharma GD ACS Appl Mater Interfaces; 2021 Feb; 13(5):6461-6469. PubMed ID: 33524254 [TBL] [Abstract][Full Text] [Related]
17. Highly Efficient Organic Solar Cells with the Highly Crystalline Third Component as a Morphology Regulator. Sun S; Tan C; Zhang Z; Zhou H; Xu W; Xu Y; Du X; Jeong SY; Woo HY; Zhang F; Zhang C; Sun Q Small; 2024 Nov; 20(44):e2404734. PubMed ID: 38966904 [TBL] [Abstract][Full Text] [Related]
18. Improvement of Charge Collection and Performance Reproducibility in Inverted Organic Solar Cells by Suppression of ZnO Subgap States. Wu B; Wu Z; Yang Q; Zhu F; Ng TW; Lee CS; Cheung SH; So SK ACS Appl Mater Interfaces; 2016 Jun; 8(23):14717-24. PubMed ID: 27224960 [TBL] [Abstract][Full Text] [Related]
19. Improving the efficiency of ternary organic solar cells by reducing energy loss. Wang M; Shi Y; Zhang Z; Shen Y; Lv M; Yan Y; Zhou H; Zhang J; Lv K; Zhang Y; Peng H; Wei Z Nanoscale Horiz; 2023 Jul; 8(8):1073-1081. PubMed ID: 37345335 [TBL] [Abstract][Full Text] [Related]
20. Outstanding Fill Factor in Inverted Organic Solar Cells with SnO Di Mario L; Garcia Romero D; Wang H; Tekelenburg EK; Meems S; Zaharia T; Portale G; Loi MA Adv Mater; 2024 May; 36(20):e2301404. PubMed ID: 36999655 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]