These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 34132726)
1. Redox-induced target-dependent ratiometric fluorescence sensing strategy and logic gate operation for detection of α-glucosidase activity and its inhibitor. Yuan X; Sun Y; Zhao P; Zhao L; Xiong Z Dalton Trans; 2021 Jul; 50(27):9426-9437. PubMed ID: 34132726 [TBL] [Abstract][Full Text] [Related]
2. Ratiometric fluorescence monitoring of α-glucosidase activity based on oxidase-like property of MnO Shi M; Cen Y; Xu G; Wei F; Xu X; Cheng X; Chai Y; Sohail M; Hu Q Anal Chim Acta; 2019 Oct; 1077():225-231. PubMed ID: 31307713 [TBL] [Abstract][Full Text] [Related]
3. A label-free fluorescent sensor based on silicon quantum dots-MnO Liu J; Duan X; Wang M; Su X Analyst; 2019 Dec; 144(24):7398-7405. PubMed ID: 31670357 [TBL] [Abstract][Full Text] [Related]
4. A ratiometric fluorescence probe based on graphene quantum dots and o-phenylenediamine for highly sensitive detection of acetylcholinesterase activity. Ye M; Lin B; Yu Y; Li H; Wang Y; Zhang L; Cao Y; Guo M Mikrochim Acta; 2020 Aug; 187(9):511. PubMed ID: 32833082 [TBL] [Abstract][Full Text] [Related]
5. CoOOH nanosheets ensure ratiometric fluorescence assay of acetylcholinesterase. Zhang Wang Xu Yang Shu XP; Wang JH Talanta; 2022 Nov; 249():123664. PubMed ID: 35700646 [TBL] [Abstract][Full Text] [Related]
6. A ratiometric fluorescence platform based on WS Zhai Z; Wang W; Chai Z; Yuan Y; Zhu Q; Ge J; Li Z Spectrochim Acta A Mol Biomol Spectrosc; 2024 Apr; 310():123959. PubMed ID: 38290280 [TBL] [Abstract][Full Text] [Related]
7. A fluorescence resonance energy transfer (FRET) based "Turn-On" nanofluorescence sensor using a nitrogen-doped carbon dot-hexagonal cobalt oxyhydroxide nanosheet architecture and application to α-glucosidase inhibitor screening. Li G; Kong W; Zhao M; Lu S; Gong P; Chen G; Xia L; Wang H; You J; Wu Y Biosens Bioelectron; 2016 May; 79():728-35. PubMed ID: 26774085 [TBL] [Abstract][Full Text] [Related]
8. The determination of α-glucosidase activity through a nano fluorescent sensor of F-PDA-CoOOH. Zhang H; Wang Z; Yang X; Li ZL; Sun L; Ma J; Jiang H Anal Chim Acta; 2019 Nov; 1080():170-177. PubMed ID: 31409467 [TBL] [Abstract][Full Text] [Related]
9. Modulation of inner filter effect between persistent luminescent particles and 2, 3-diaminophenazine for ratiometric fluorescent assay of ascorbic acid and ascorbate oxidase activity. Yao C; Zhang G; Guan Y; Yang T; Hu R; Yang Y Spectrochim Acta A Mol Biomol Spectrosc; 2022 Nov; 280():121564. PubMed ID: 35797885 [TBL] [Abstract][Full Text] [Related]
10. A redox modulated ratiometric fluorometric method based on the use of dual-color carbon dots for determination of the activity of enzymes participating in ascorbic acid-related reactions. Cheng X; Xu J; Wang L; Xu G; Wei F; Chai Y; Hu Q; Cen Y Mikrochim Acta; 2019 Nov; 186(12):818. PubMed ID: 31748845 [TBL] [Abstract][Full Text] [Related]
11. A redox reaction-induced ratiometric fluorescence platform for the specific detection of ascorbic acid based on Ag Chen H; Cai Z; Gui J; Tang Y; Yin P; Zhu X; Zhang Y; Li H; Liu M; Yao S J Mater Chem B; 2023 Feb; 11(6):1279-1287. PubMed ID: 36651433 [TBL] [Abstract][Full Text] [Related]
12. "Turn-on" fluorometric probe for α-glucosidase activity using red fluorescent carbon dots and 3,3',5,5'-tetramethylbenzidine. Liu J; Wu F; Liu C; Bao H; Fu T Mikrochim Acta; 2020 Aug; 187(9):498. PubMed ID: 32803321 [TBL] [Abstract][Full Text] [Related]
13. Portable smartphone device-based multi-signal sensing system for on-site and visual determination of alkaline phosphatase in human serum. Zhang S; Lu Z; Li S; Wang T; Li J; Chen M; Chen S; Sun M; Wang Y; Rao H; Liu T Mikrochim Acta; 2021 Apr; 188(5):157. PubMed ID: 33825047 [TBL] [Abstract][Full Text] [Related]
14. An inner filter effect-based nitrogen-doped carbon dots-CoOOH nanoflakes fluorescence probe for detection of ascorbic acid by chemical redox modulation. Lan W; Hai C; Shi Q; Wang S; Deng G; Chen H; Wang Y; Yang J; Fu H J Sci Food Agric; 2022 Nov; 102(14):6658-6667. PubMed ID: 35608930 [TBL] [Abstract][Full Text] [Related]
15. A ratiometric fluorescence-scattered light strategy based on MoS Wu Z; Nan D; Yang H; Pan S; Liu H; Hu X Anal Chim Acta; 2019 Dec; 1091():59-68. PubMed ID: 31679575 [TBL] [Abstract][Full Text] [Related]
16. Bionanosensor based on N-doped graphene quantum dots coupled with CoOOH nanosheets and their application for in vivo analysis of ascorbic acid. Wang C; Pan C; Wei Z; Wei X; Yang F; Mao L Anal Chim Acta; 2020 Mar; 1100():191-199. PubMed ID: 31987140 [TBL] [Abstract][Full Text] [Related]
17. A MnO An X; Chen R; Chen Q; Tan Q; Pan S; Liu H; Hu X Mikrochim Acta; 2021 Apr; 188(5):156. PubMed ID: 33825037 [TBL] [Abstract][Full Text] [Related]
18. Hexagonal cobalt oxyhydroxide-carbon dots hybridized surface: high sensitive fluorescence turn-on probe for monitoring of ascorbic acid in rat brain following brain ischemia. Li L; Wang C; Liu K; Wang Y; Liu K; Lin Y Anal Chem; 2015 Mar; 87(6):3404-11. PubMed ID: 25697047 [TBL] [Abstract][Full Text] [Related]
19. Silver ion-regulated ratiometric fluorescence assay for alkaline phosphatase detection based on carbon dots and o-phenylenediamine. Li P; Liang N; Liu C; Xia L; Qu F; Song ZL; Kong RM Spectrochim Acta A Mol Biomol Spectrosc; 2022 Dec; 282():121682. PubMed ID: 35926289 [TBL] [Abstract][Full Text] [Related]
20. A ratiometric fluorescence sensor for ascorbic acid determination based on an AND-NAND logic pair. Zhang Z; Long D; Yang M; Chang X; Xian H; Chen J; Peng H; Peng J Mikrochim Acta; 2021 Oct; 188(11):376. PubMed ID: 34637002 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]