These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 34132817)

  • 41. Lung bioaccessibility of As, Cu, Fe, Mn, Ni, Pb, and Zn in fine fraction (<20μm) from contaminated soils and mine tailings.
    Guney M; Bourges CM; Chapuis RP; Zagury GJ
    Sci Total Environ; 2017 Feb; 579():378-386. PubMed ID: 27887839
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Size-dependent biological effect of copper oxide nanoparticles exposure on cucumber (Cucumis sativus).
    Zong X; Wu D; Zhang J; Tong X; Yin Y; Sun Y; Guo H
    Environ Sci Pollut Res Int; 2022 Oct; 29(46):69517-69526. PubMed ID: 35567686
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Modulation mechanism of phytotoxicity on Ipomoea aquatica Forssk. by surface coating-modified copper oxide nanoparticles and its health risk assessment.
    Huang Y; Bai X; Li C; Kang M; Weng Y; Gong D
    Environ Pollut; 2022 Dec; 314():120288. PubMed ID: 36180003
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Testing single extraction methods and in vitro tests to assess the geochemical reactivity and human bioaccessibility of silver in urban soils amended with silver nanoparticles.
    Cruz N; Rodrigues SM; Tavares D; Monteiro RJ; Carvalho L; Trindade T; Duarte AC; Pereira E; Römkens PF
    Chemosphere; 2015 Sep; 135():304-11. PubMed ID: 25966049
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Adsorption, oxidation, and bioaccessibility of As(III) in soils.
    Yang JK; Barnett MO; Zhuang J; Fendorf SE; Jardine PM
    Environ Sci Technol; 2005 Sep; 39(18):7102-10. PubMed ID: 16201635
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Correlation between lead speciation and inhalation bioaccessibility using two different simulated lung fluids.
    Kastury F; Karna RR; Scheckel KG; Juhasz AL
    Environ Pollut; 2020 Aug; 263(Pt B):. PubMed ID: 33633430
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The aggregation and sedimentation of two different sized copper oxide nanoparticles in soil solutions: Dependence on pH and dissolved organic matter.
    Qiu Y; Mu Z; Wang N; Wang X; Xu M; Li H
    Sci Total Environ; 2020 Aug; 731():139215. PubMed ID: 32388160
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Negative Effects of Copper Oxide Nanoparticles on Carbon and Nitrogen Cycle Microbial Activities in Contrasting Agricultural Soils and in Presence of Plants.
    Simonin M; Cantarel AAM; Crouzet A; Gervaix J; Martins JMF; Richaume A
    Front Microbiol; 2018; 9():3102. PubMed ID: 30619181
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Oral and inhalation bioaccessibility of potentially toxic elements in household dust from former Hg mining district, Idrija, Slovenia.
    Zupančič M; Šušteršič M; Bavec Š; Gosar M
    Environ Geochem Health; 2021 Sep; 43(9):3505-3531. PubMed ID: 33570697
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Time and Nanoparticle Concentration Affect the Extractability of Cu from CuO NP-Amended Soil.
    Gao X; Spielman-Sun E; Rodrigues SM; Casman EA; Lowry GV
    Environ Sci Technol; 2017 Feb; 51(4):2226-2234. PubMed ID: 28106997
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Environmental efficacy of polyethylene microplastics: Enhancing the solidification of CuO nanoparticles and reducing the physiological toxicity to peanuts.
    Sun H; Zhang H; Li L; Wen J; Li X; Mao H; Wang J
    Sci Total Environ; 2024 Oct; 946():174206. PubMed ID: 38914321
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Impact of nanoplastic debris on the stability and transport of metal oxide nanoparticles: role of varying soil solution chemistry.
    Tiwari E; Singh N; Khandelwal N; Ganie ZA; Choudhary A; Monikh FA; Darbha GK
    Chemosphere; 2022 Dec; 308(Pt 1):136091. PubMed ID: 36002060
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Low mobility of CuO and TiO
    Simonin M; Martins JMF; Uzu G; Spadini L; Navel A; Richaume A
    Sci Total Environ; 2021 Aug; 783():146952. PubMed ID: 33866176
    [TBL] [Abstract][Full Text] [Related]  

  • 54. CuO, ZnO, and γ-Fe
    Wei X; Cao P; Wang G; Liu Y; Song J; Han J
    Ecotoxicol Environ Saf; 2021 Jul; 217():112232. PubMed ID: 33864980
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Phytotoxicity and accumulation of copper oxide nanoparticles to the Cu-tolerant plant Elsholtzia splendens.
    Shi J; Peng C; Yang Y; Yang J; Zhang H; Yuan X; Chen Y; Hu T
    Nanotoxicology; 2014 Mar; 8(2):179-88. PubMed ID: 23311584
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Soil and foliar exposure of soybean (Glycine max) to Cu: Nanoparticle coating-dependent plant responses.
    Deng C; Wang Y; Cantu JM; Valdes C; Navarro G; Cota-Ruiz K; Hernandez-Viezcas JA; Li C; Elmer WH; Dimkpa CO; White JC; Gardea-Torresdey JL
    NanoImpact; 2022 Apr; 26():100406. PubMed ID: 35588596
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The Impact Assessment of CuO Nanoparticles on the Composition and Ultrastructure of
    Lung I; Opriş O; Soran ML; Culicov O; Ciorîță A; Stegarescu A; Zinicovscaia I; Yushin N; Vergel K; Kacso I; Borodi G; Pârvu M
    Int J Environ Res Public Health; 2021 Jun; 18(13):. PubMed ID: 34201491
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Influence of sawdust addition on the toxic effects of cadmium and copper oxide nanoparticles on Vigna radiata seeds.
    Subpiramaniyam S; Hong SC; Yi PI; Jang SH; Suh JM; Jung ES; Park JS; Cho LH
    Environ Pollut; 2021 Nov; 289():117311. PubMed ID: 34015691
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Methane oxidation and abundance of methane oxidizers in tropical agricultural soil (vertisol) in response to CuO and ZnO nanoparticles contamination.
    Mohanty SR; Rajput P; Kollah B; Chourasiya D; Tiwari A; Singh M; Rao AS
    Environ Monit Assess; 2014 Jun; 186(6):3743-53. PubMed ID: 24504670
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Copper Oxide Nanoparticles Stimulate the Immune Response and Decrease Antioxidant Defense in Mice After Six-Week Inhalation.
    Tulinska J; Mikusova ML; Liskova A; Busova M; Masanova V; Uhnakova I; Rollerova E; Alacova R; Krivosikova Z; Wsolova L; Dusinska M; Horvathova M; Szabova M; Lukan N; Stuchlikova M; Kuba D; Vecera Z; Coufalik P; Krumal K; Alexa L; Vrlikova L; Buchtova M; Dumkova J; Piler P; Thon V; Mikuska P
    Front Immunol; 2022; 13():874253. PubMed ID: 35547729
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.