These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 34133021)

  • 1. Microfluidic cultivation and analysis of productive biofilms.
    Lemke P; Zoheir AE; Rabe KS; Niemeyer CM
    Biotechnol Bioeng; 2021 Oct; 118(10):3860-3870. PubMed ID: 34133021
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine-assisted cultivation and analysis of biofilms.
    Hansen SH; Kabbeck T; Radtke CP; Krause S; Krolitzki E; Peschke T; Gasmi J; Rabe KS; Wagner M; Horn H; Hubbuch J; Gescher J; Niemeyer CM
    Sci Rep; 2019 Jun; 9(1):8933. PubMed ID: 31222095
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cultivation of Productive Biofilms in Flow Reactors and Their Characterization by CLSM.
    David C; Heuschkel I; Bühler K; Karande R
    Methods Mol Biol; 2020; 2100():437-452. PubMed ID: 31939142
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemical biosensors on microfluidic chips as promising tools to study microbial biofilms: a review.
    Abouhagger A; Celiešiūtė-Germanienė R; Bakute N; Stirke A; Melo WCMA
    Front Cell Infect Microbiol; 2024; 14():1419570. PubMed ID: 39386171
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An in situ Raman spectroscopy-based microfluidic "lab-on-a-chip" platform for non-destructive and continuous characterization of Pseudomonas aeruginosa biofilms.
    Feng J; de la Fuente-Núñez C; Trimble MJ; Xu J; Hancock RE; Lu X
    Chem Commun (Camb); 2015 May; 51(43):8966-9. PubMed ID: 25929246
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Autoinducer-2 analogs and electric fields - an antibiotic-free bacterial biofilm combination treatment.
    Subramanian S; Gerasopoulos K; Guo M; Sintim HO; Bentley WE; Ghodssi R
    Biomed Microdevices; 2016 Oct; 18(5):95. PubMed ID: 27647148
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidic bioanalytical flow cells for biofilm studies: a review.
    Pousti M; Zarabadi MP; Abbaszadeh Amirdehi M; Paquet-Mercier F; Greener J
    Analyst; 2018 Dec; 144(1):68-86. PubMed ID: 30394455
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic Platform with Precisely Controlled Hydrodynamic Parameters and Integrated Features for Generation of Microvortices to Accurately Form and Monitor Biofilms in Flow.
    Wen K; Gorbushina AA; Schwibbert K; Bell J
    ACS Biomater Sci Eng; 2024 Jul; 10(7):4626-4634. PubMed ID: 38904279
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidic Evolution-On-A-Chip Reveals New Mutations that Cause Antibiotic Resistance.
    Zoheir AE; Späth GP; Niemeyer CM; Rabe KS
    Small; 2021 Mar; 17(10):e2007166. PubMed ID: 33458946
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-throughput dental biofilm growth analysis for multiparametric microenvironmental biochemical conditions using microfluidics.
    Lam RH; Cui X; Guo W; Thorsen T
    Lab Chip; 2016 Apr; 16(9):1652-62. PubMed ID: 27045372
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic Studies of Biofilm Formation in Dynamic Environments.
    Yawata Y; Nguyen J; Stocker R; Rusconi R
    J Bacteriol; 2016 Oct; 198(19):2589-95. PubMed ID: 27274032
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Methods for characterizing the co-development of biofilm and habitat heterogeneity.
    Li X; Song JL; Culotti A; Zhang W; Chopp DL; Lu N; Packman AI
    J Vis Exp; 2015 Mar; (97):. PubMed ID: 25866914
    [TBL] [Abstract][Full Text] [Related]  

  • 13. cBSA-147 for the preparation of bacterial biofilms in a microchannel reactor.
    Ng JF; Jaenicke S; Eisele K; Dorn J; Weil T
    Biointerphases; 2010 Sep; 5(3):FA41-7. PubMed ID: 21171712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Real-time chemical imaging of bacterial activity in biofilms using open-channel microfluidics and synchrotron FTIR spectromicroscopy.
    Holman HY; Miles R; Hao Z; Wozei E; Anderson LM; Yang H
    Anal Chem; 2009 Oct; 81(20):8564-70. PubMed ID: 19775125
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recombinant
    Zhu CT; Mei YY; Zhu LL; Xu Y; Sheng S; Wang J
    Int J Mol Sci; 2018 Aug; 19(9):. PubMed ID: 30200345
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How to Perform a Microfluidic Cultivation Experiment-A Guideline to Success.
    Täuber S; Schmitz J; Blöbaum L; Fante N; Steinhoff H; Grünberger A
    Biosensors (Basel); 2021 Nov; 11(12):. PubMed ID: 34940242
    [TBL] [Abstract][Full Text] [Related]  

  • 17. BioFlux™ 200 Microfluidic System to Study A. baumannii Biofilm Formation in a Dynamic Mode of Growth.
    Naudin B; Heins A; Pinhal S; Dé E; Nicol M
    Methods Mol Biol; 2019; 1946():167-176. PubMed ID: 30798554
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation of bacterial streamers during filtration in microfluidic systems.
    Marty A; Roques C; Causserand C; Bacchin P
    Biofouling; 2012; 28(6):551-62. PubMed ID: 22686836
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A microfluidic device for high throughput bacterial biofilm studies.
    Kim J; Hegde M; Kim SH; Wood TK; Jayaraman A
    Lab Chip; 2012 Mar; 12(6):1157-63. PubMed ID: 22318368
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A microfluidic platform for in situ investigation of biofilm formation and its treatment under controlled conditions.
    Straub H; Eberl L; Zinn M; Rossi RM; Maniura-Weber K; Ren Q
    J Nanobiotechnology; 2020 Nov; 18(1):166. PubMed ID: 33176791
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.