These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 34133129)
41. Orbitrap Mass Spectrometry and High-Field Asymmetric Waveform Ion Mobility Spectrometry (FAIMS) Enable the in-Depth Analysis of Human Serum Proteoforms. Kline JT; Belford MW; Boeser CL; Huguet R; Fellers RT; Greer JB; Greer SM; Horn DM; Durbin KR; Dunyach JJ; Ahsan N; Fornelli L J Proteome Res; 2023 Nov; 22(11):3418-3426. PubMed ID: 37774690 [TBL] [Abstract][Full Text] [Related]
42. Large-scale analysis of peptide sequence variants: the case for high-field asymmetric waveform ion mobility spectrometry. Creese AJ; Smart J; Cooper HJ Anal Chem; 2013 May; 85(10):4836-43. PubMed ID: 23646896 [TBL] [Abstract][Full Text] [Related]
43. Coupling capillary electrophoresis and high-field asymmetric waveform ion mobility spectrometry mass spectrometry for the analysis of complex lipopolysaccharides. Li J; Purves RW; Richards JC Anal Chem; 2004 Aug; 76(16):4676-83. PubMed ID: 15307776 [TBL] [Abstract][Full Text] [Related]
44. N-glycan occupancy of Arabidopsis N-glycoproteins. Song W; Mentink RA; Henquet MG; Cordewener JH; van Dijk AD; Bosch D; America AH; van der Krol AR J Proteomics; 2013 Nov; 93():343-55. PubMed ID: 23994444 [TBL] [Abstract][Full Text] [Related]
45. High-field asymmetric waveform ion mobility spectrometry (FAIMS) coupled with high-resolution electron transfer dissociation mass spectrometry for the analysis of isobaric phosphopeptides. Xuan Y; Creese AJ; Horner JA; Cooper HJ Rapid Commun Mass Spectrom; 2009 Jul; 23(13):1963-9. PubMed ID: 19504484 [TBL] [Abstract][Full Text] [Related]
46. Distortion of ion structures by field asymmetric waveform ion mobility spectrometry. Shvartsburg AA; Li F; Tang K; Smith RD Anal Chem; 2007 Feb; 79(4):1523-8. PubMed ID: 17297950 [TBL] [Abstract][Full Text] [Related]
47. LC-FAIMS-MS/MS for quantification of a peptide in plasma and evaluation of FAIMS global selectivity from plasma components. Xia YQ; Wu ST; Jemal M Anal Chem; 2008 Sep; 80(18):7137-43. PubMed ID: 18652493 [TBL] [Abstract][Full Text] [Related]
48. Enhanced analyte detection using in-source fragmentation of field asymmetric waveform ion mobility spectrometry-selected ions in combination with time-of-flight mass spectrometry. Brown LJ; Smith RW; Toutoungi DE; Reynolds JC; Bristow AW; Ray A; Sage A; Wilson ID; Weston DJ; Boyle B; Creaser CS Anal Chem; 2012 May; 84(9):4095-103. PubMed ID: 22455620 [TBL] [Abstract][Full Text] [Related]
49. Combining FAIMS based glycoproteomics and DIA proteomics reveals widespread proteome alterations in response to glycosylation occupancy changes in Neisseria gonorrhoeae. Hadjineophytou C; Loh E; Koomey M; Scott NE Proteomics; 2024 Jul; 24(14):e2300496. PubMed ID: 38361220 [TBL] [Abstract][Full Text] [Related]
50. High-field asymmetric waveform ion mobility spectrometry coupled with liquid chromatography/electrospray ionization tandem mass spectrometry (LC/ESI-FAIMS-MS/MS) multi-component bioanalytical method development, performance evaluation and demonstration of the constancy of the compensation voltage with change of mobile phase composition or flow rate. Wu ST; Xia YQ; Jemal M Rapid Commun Mass Spectrom; 2007; 21(22):3667-76. PubMed ID: 17939154 [TBL] [Abstract][Full Text] [Related]
51. High-throughput site-specific Sun Z; Fu B; Wang G; Zhang L; Xu R; Zhang Y; Lu H Natl Sci Rev; 2023 Jan; 10(1):nwac059. PubMed ID: 36879659 [TBL] [Abstract][Full Text] [Related]
52. Sialic acid linkage-specific quantitative N-glycoproteomics using selective alkylamidation and multiplex TMT-labeling. Yang H; Tian Z Anal Chim Acta; 2022 Oct; 1230():340391. PubMed ID: 36192063 [TBL] [Abstract][Full Text] [Related]
53. To What Extent is FAIMS Beneficial in the Analysis of Proteins? Cooper HJ J Am Soc Mass Spectrom; 2016 Apr; 27(4):566-77. PubMed ID: 26843211 [TBL] [Abstract][Full Text] [Related]
54. High-field asymmetric waveform ion mobility spectrometry: a new tool for mass spectrometry. Guevremont R J Chromatogr A; 2004 Nov; 1058(1-2):3-19. PubMed ID: 15595648 [TBL] [Abstract][Full Text] [Related]
55. Analysis of paralytic shellfish toxins using high-field asymmetric waveform ion mobility spectrometry with liquid chromatography-mass spectrometry. Beach DG; Melanson JE; Purves RW Anal Bioanal Chem; 2015 Mar; 407(9):2473-84. PubMed ID: 25619987 [TBL] [Abstract][Full Text] [Related]
56. Glycan size and attachment site location affect electron transfer dissociation (ETD) fragmentation and automated glycopeptide identification. Alagesan K; Hinneburg H; Seeberger PH; Silva DV; Kolarich D Glycoconj J; 2019 Dec; 36(6):487-493. PubMed ID: 31637569 [TBL] [Abstract][Full Text] [Related]
57. GPSeeker Enables Quantitative Structural N-Glycoproteomics for Site- and Structure-Specific Characterization of Differentially Expressed N-Glycosylation in Hepatocellular Carcinoma. Xiao K; Tian Z J Proteome Res; 2019 Jul; 18(7):2885-2895. PubMed ID: 31117584 [TBL] [Abstract][Full Text] [Related]
58. Site- and structure-specific quantitative N-glycoproteomics study of differential N-glycosylation in MCF-7 cancer cells. Xue B; Xiao K; Wang Y; Tian Z J Proteomics; 2020 Feb; 212():103594. PubMed ID: 31759178 [TBL] [Abstract][Full Text] [Related]
59. Methods to improve quantitative glycoprotein coverage from bottom-up LC-MS data. Chang D; Zaia J Mass Spectrom Rev; 2022 Nov; 41(6):922-937. PubMed ID: 33764573 [TBL] [Abstract][Full Text] [Related]
60. Identification of N-nitrosamines in treated drinking water using nanoelectrospray ionization high-field asymmetric waveform ion mobility spectrometry with quadrupole time-of-flight mass spectrometry. Zhao YY; Liu X; Boyd JM; Qin F; Li J; Li XF J Chromatogr Sci; 2009 Jan; 47(1):92-6. PubMed ID: 19161662 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]