BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 34133271)

  • 1. Structure-Function Relationships in Muscle Fibres: MyoRobot Online Assessment of Muscle Fibre Elasticity and Sarcomere Length Distributions.
    Haug M; Ritter P; Michael M; Reischl B; Schurmann S; Prols G; Friedrich O
    IEEE Trans Biomed Eng; 2022 Jan; 69(1):148-155. PubMed ID: 34133271
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sarcomere dynamics and contraction-induced injury to maximally activated single muscle fibres from soleus muscles of rats.
    Macpherson PC; Dennis RG; Faulkner JA
    J Physiol; 1997 Apr; 500 ( Pt 2)(Pt 2):523-33. PubMed ID: 9147335
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sarcomere length non-uniformities dictate force production along the descending limb of the force-length relation.
    Haeger R; de Souza Leite F; Rassier DE
    Proc Biol Sci; 2020 Oct; 287(1937):20202133. PubMed ID: 33109011
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MyoRobot 2.0: An advanced biomechatronics platform for automated, environmentally controlled skeletal muscle single fiber biomechanics assessment employing inbuilt real-time optical imaging.
    Haug M; Meyer C; Reischl B; Prölß G; Nübler S; Schürmann S; Schneidereit D; Heckel M; Pöschel T; Rupitsch SJ; Friedrich O
    Biosens Bioelectron; 2019 Aug; 138():111284. PubMed ID: 31103932
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Redox Balance Differentially Affects Biomechanics in Permeabilized Single Muscle Fibres-Active and Passive Force Assessments with the
    Michael M; Kovbasyuk L; Ritter P; Reid MB; Friedrich O; Haug M
    Cells; 2022 Nov; 11(23):. PubMed ID: 36496975
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Age-related changes in human single muscle fibre passive elastic properties are sarcomere length dependent.
    Noonan AM; Mazara N; Zwambag DP; Weersink E; Power GA; Brown SHM
    Exp Gerontol; 2020 Aug; 137():110968. PubMed ID: 32437839
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sarcomeric visco-elasticity of chemically skinned skeletal muscle fibres of the rabbit at rest.
    Ranatunga KW
    J Muscle Res Cell Motil; 2001; 22(5):399-414. PubMed ID: 11964066
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energy transfer during stress relaxation of contracting frog muscle fibres.
    Mantovani M; Heglund NC; Cavagna GA
    J Physiol; 2001 Dec; 537(Pt 3):923-39. PubMed ID: 11744765
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic behaviour of half-sarcomeres during and after stretch in activated rabbit psoas myofibrils: sarcomere asymmetry but no 'sarcomere popping'.
    Telley IA; Stehle R; Ranatunga KW; Pfitzer G; Stüssi E; Denoth J
    J Physiol; 2006 May; 573(Pt 1):173-85. PubMed ID: 16527855
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distribution of sarcomere length and intracellular calcium in mouse skeletal muscle following stretch-induced injury.
    Balnave CD; Davey DF; Allen DG
    J Physiol; 1997 Aug; 502 ( Pt 3)(Pt 3):649-59. PubMed ID: 9279815
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The sarcomere force-length relationship in an intact muscle-tendon unit.
    Moo EK; Leonard TR; Herzog W
    J Exp Biol; 2020 Mar; 223(Pt 6):. PubMed ID: 32098882
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stretch of contracting muscle fibres: evidence for regularly spaced active sites along the filaments and enhanced mechanical performance.
    Edman KA; Elzinga G; Noble MI
    Adv Exp Med Biol; 1984; 170():739-51. PubMed ID: 6611040
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The MyoRobot: A novel automated biomechatronics system to assess voltage/Ca
    Haug M; Reischl B; Prölß G; Pollmann C; Buckert T; Keidel C; Schürmann S; Hock M; Rupitsch S; Heckel M; Pöschel T; Scheibel T; Haynl C; Kiriaev L; Head SI; Friedrich O
    Biosens Bioelectron; 2018 Apr; 102():589-599. PubMed ID: 29245144
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamics of individual sarcomeres during and after stretch in activated single myofibrils.
    Rassier DE; Herzog W; Pollack GH
    Proc Biol Sci; 2003 Aug; 270(1525):1735-40. PubMed ID: 12965002
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of stretching on undamped elasticity in muscle fibres from Rana temporaria.
    Mantovani M; Cavagna GA; Heglund NC
    J Muscle Res Cell Motil; 1999 Jan; 20(1):33-43. PubMed ID: 10360232
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sarcomere Lengths Become More Uniform Over Time in Intact Muscle-Tendon Unit During Isometric Contractions.
    Moo EK; Herzog W
    Front Physiol; 2020; 11():448. PubMed ID: 32477162
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Force produced by isolated sarcomeres and half-sarcomeres after an imposed stretch.
    Rassier DE; Pavlov I
    Am J Physiol Cell Physiol; 2012 Jan; 302(1):C240-8. PubMed ID: 21998143
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stretch-induced force enhancement and stability of skeletal muscle myofibrils.
    Rassier DE; Herzog W; Pollack GH
    Adv Exp Med Biol; 2003; 538():501-15; discussion 515. PubMed ID: 15098694
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Overextended sarcomeres regain filament overlap following stretch.
    Panchangam A; Herzog W
    J Biomech; 2012 Sep; 45(14):2387-91. PubMed ID: 22858317
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of ultrastructural and contractile activation properties of crustacean (Cherax destructor) muscle fibres during claw regeneration and moulting.
    West JM; Humphris DC; Stephenson DG
    J Muscle Res Cell Motil; 1995 Jun; 16(3):267-84. PubMed ID: 7560000
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.