These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 34133282)

  • 1. ASFold-DNN: Protein Fold Recognition Based on Evolutionary Features With Variable Parameters Using Full Connected Neural Network.
    Qin X; Zhang L; Liu M; Xu Z; Liu G
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(5):2712-2722. PubMed ID: 34133282
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PRFold-TNN: Protein Fold Recognition With an Ensemble Feature Selection Method Using PageRank Algorithm Based on Transformer.
    Qin X; Zhang L; Liu M; Liu G
    IEEE/ACM Trans Comput Biol Bioinform; 2024 Jun; PP():. PubMed ID: 38875077
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Enhanced Protein Fold Recognition for Low Similarity Datasets Using Convolutional and Skip-Gram Features With Deep Neural Network.
    Bankapur S; Patil N
    IEEE Trans Nanobioscience; 2021 Jan; 20(1):42-49. PubMed ID: 32894720
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Feature selection may improve deep neural networks for the bioinformatics problems.
    Chen Z; Pang M; Zhao Z; Li S; Miao R; Zhang Y; Feng X; Feng X; Zhang Y; Duan M; Huang L; Zhou F
    Bioinformatics; 2020 Mar; 36(5):1542-1552. PubMed ID: 31591638
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ResCNNT-fold: Combining residual convolutional neural network and Transformer for protein fold recognition from language model embeddings.
    Qin X; Liu M; Liu G
    Comput Biol Med; 2023 Nov; 166():107571. PubMed ID: 37864911
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving protein fold recognition by extracting fold-specific features from predicted residue-residue contacts.
    Zhu J; Zhang H; Li SC; Wang C; Kong L; Sun S; Zheng WM; Bu D
    Bioinformatics; 2017 Dec; 33(23):3749-3757. PubMed ID: 28961795
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A universal deep learning approach for modeling the flow of patients under different severities.
    Jiang S; Chin KS; Tsui KL
    Comput Methods Programs Biomed; 2018 Feb; 154():191-203. PubMed ID: 29249343
    [TBL] [Abstract][Full Text] [Related]  

  • 8. LPI-HyADBS: a hybrid framework for lncRNA-protein interaction prediction integrating feature selection and classification.
    Zhou L; Duan Q; Tian X; Xu H; Tang J; Peng L
    BMC Bioinformatics; 2021 Nov; 22(1):568. PubMed ID: 34836494
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of Recombination Spots Using Novel Hybrid Feature Extraction Method via Deep Learning Approach.
    Khan F; Khan M; Iqbal N; Khan S; Muhammad Khan D; Khan A; Wei DQ
    Front Genet; 2020; 11():539227. PubMed ID: 33093842
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Research on Pig Sound Recognition Based on Deep Neural Network and Hidden Markov Models.
    Pan W; Li H; Zhou X; Jiao J; Zhu C; Zhang Q
    Sensors (Basel); 2024 Feb; 24(4):. PubMed ID: 38400427
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Unified Multi-Class Feature Selection Framework for Microarray Data.
    Ding X; Yang F; Ma F; Chen S
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(6):3725-3736. PubMed ID: 37698974
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep Neural Network and Extreme Gradient Boosting Based Hybrid Classifier for Improved Prediction of Protein-Protein Interaction.
    Mahapatra S; Gupta VR; Sahu SS; Panda G
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(1):155-165. PubMed ID: 33621179
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Auto-HMM-LMF: feature selection based method for prediction of drug response via autoencoder and hidden Markov model.
    Emdadi A; Eslahchi C
    BMC Bioinformatics; 2021 Jan; 22(1):33. PubMed ID: 33509079
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting drug-target interaction network using deep learning model.
    You J; McLeod RD; Hu P
    Comput Biol Chem; 2019 Jun; 80():90-101. PubMed ID: 30939415
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A learning-based framework for miRNA-disease association identification using neural networks.
    Peng J; Hui W; Li Q; Chen B; Hao J; Jiang Q; Shang X; Wei Z
    Bioinformatics; 2019 Nov; 35(21):4364-4371. PubMed ID: 30977780
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep Neural Network Based Predictions of Protein Interactions Using Primary Sequences.
    Li H; Gong XJ; Yu H; Zhou C
    Molecules; 2018 Aug; 23(8):. PubMed ID: 30071670
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Network-based drug sensitivity prediction.
    Ahmed KT; Park S; Jiang Q; Yeu Y; Hwang T; Zhang W
    BMC Med Genomics; 2020 Dec; 13(Suppl 11):193. PubMed ID: 33371891
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved protein relative solvent accessibility prediction using deep multi-view feature learning framework.
    Fan XQ; Hu J; Jia NX; Yu DJ; Zhang GJ
    Anal Biochem; 2021 Oct; 631():114358. PubMed ID: 34478704
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A supervised deep neural network approach with standardized targets for enhanced accuracy of IVIM parameter estimation from multi-SNR images.
    Mastropietro A; Procissi D; Scalco E; Rizzo G; Bertolino N
    NMR Biomed; 2022 Oct; 35(10):e4774. PubMed ID: 35587618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein fold recognition based on multi-view modeling.
    Yan K; Fang X; Xu Y; Liu B
    Bioinformatics; 2019 Sep; 35(17):2982-2990. PubMed ID: 30668845
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.