BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 34133489)

  • 21. The distinct roles of water table depth and soil properties in controlling alternative woodland-grassland states in the Cerrado.
    Ribeiro JWF; Pilon NAL; Rossatto DR; Durigan G; Kolb RM
    Oecologia; 2021 Mar; 195(3):641-653. PubMed ID: 33619596
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Decomposition of leaf litter in the Brazilian savanna on limestone and sandstone Neosols.
    Alves VN; Bertin DG; Santos DDS; Wendling B; Lana RMQ; Torres JLR; Pinheiro MHQ
    An Acad Bras Cienc; 2021; 93(3):e20200372. PubMed ID: 33950137
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dispersal mode constrains allocation of carbon and mineral nutrients in seeds of forest and savanna trees.
    de Melo RB; Ferreira CS; Lopes A; Vinson CC; Franco AC
    Plant Biol (Stuttg); 2020 Mar; 22(2):203-211. PubMed ID: 31762113
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Water economy of Neotropical savanna trees: six paradigms revisited.
    Goldstein G; Meinzer FC; Bucci SJ; Scholz FG; Franco AC; Hoffmann WA
    Tree Physiol; 2008 Mar; 28(3):395-404. PubMed ID: 18171663
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Environment, phylogeny, and photosynthetic pathway as determinants of leaf traits in savanna and forest graminoid species in central Brazil.
    Amaral EJ; Franco AC; Rivera VL; Munhoz CBR
    Oecologia; 2021 Sep; 197(1):1-11. PubMed ID: 33885981
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pedology and plant physiognomies in the Cerrado, Brazil.
    Neri AV; Schaefer CE; Souza AL; Ferreira WG; Meira-Neto JA
    An Acad Bras Cienc; 2013 Mar; 85(1):87-102. PubMed ID: 23538954
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Soil characteristics of a hyperseasonal cerrado compared to a seasonal cerrado and a floodplain grassland: implications for plant community structure.
    Amorim PK; Batalha MA
    Braz J Biol; 2006 May; 66(2B):661-70. PubMed ID: 16906298
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biodiversity and biomass relationships in a cerrado stricto sensu in Southeastern Brazil.
    Righi CA; de Oliveira Risante AP; Packer AP; do Couto HTZ
    Environ Monit Assess; 2023 Mar; 195(4):492. PubMed ID: 36943528
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Large-scale carbon stock assessment of woody vegetation in tropical dry deciduous forest of Sathanur reserve forest, Eastern Ghats, India.
    Gandhi DS; Sundarapandian S
    Environ Monit Assess; 2017 Apr; 189(4):187. PubMed ID: 28353204
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Contribution to the discussions on the origin of the cerrado biome: Brazilian savanna.
    Pinheiro MH; Monteiro R
    Braz J Biol; 2010 Feb; 70(1):95-102. PubMed ID: 20231964
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fire drives functional thresholds on the savanna-forest transition.
    Dantas Vde L; Batalha MA; Pausas JG
    Ecology; 2013 Nov; 94(11):2454-63. PubMed ID: 24400497
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Phenotypic plasticity to light of two congeneric trees from contrasting habitats: Brazilian Atlantic Forest versus cerrado (savanna).
    Barros Fde V; Goulart MF; Telles SB; Lovato MB; Valladares F; de Lemos-Filho JP
    Plant Biol (Stuttg); 2012 Jan; 14(1):208-15. PubMed ID: 21972934
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The effects of forest-savanna-grassland gradients on bird communities of Chiquitano Dry Forests domain, in western Brazil.
    Godoi MN; Souza EO
    An Acad Bras Cienc; 2016; 88(3 Suppl):1755-1767. PubMed ID: 27683763
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Impact of the conversion of Brazilian woodland savanna (cerradão) to pasture and Eucalyptus plantations on soil nitrogen mineralization.
    López-Poma R; Pivello VR; de Brito GS; Bautista S
    Sci Total Environ; 2020 Feb; 704():135397. PubMed ID: 31810678
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Soil chemical factors and grassland species density in Emas National Park (central Brazil).
    Amorim P; Batalha M
    Braz J Biol; 2008 May; 68(2):279-85. PubMed ID: 18660955
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The arboreal component of a dry forest in Northeastern Brazil.
    Rodal MJ; Nascimento LM
    Braz J Biol; 2006 May; 66(2A):479-91. PubMed ID: 16862303
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of nitrogen and phosphorus availability on the early growth of two congeneric pairs of savanna and forest species.
    Paganeli B; Batalha MA
    Braz J Biol; 2021; 82():e235573. PubMed ID: 34105662
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Optimizing biomass estimates of savanna woodland at different spatial scales in the Brazilian Cerrado: Re-evaluating allometric equations and environmental influences.
    Roitman I; Bustamante MMC; Haidar RF; Shimbo JZ; Abdala GC; Eiten G; Fagg CW; Felfili MC; Felfili JM; Jacobson TKB; Lindoso GS; Keller M; Lenza E; Miranda SC; Pinto JRR; Rodrigues AA; Delitti WBC; Roitman P; Sampaio JM
    PLoS One; 2018; 13(8):e0196742. PubMed ID: 30067735
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Contributions of woody and herbaceous vegetation to tropical savanna ecosystem productivity: a quasi-global estimate.
    Lloyd J; Bird MI; Vellen L; Miranda AC; Veenendaal EM; Djagbletey G; Miranda HS; Cook G; Farquhar GD
    Tree Physiol; 2008 Mar; 28(3):451-68. PubMed ID: 18171668
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The role of plant functional traits in understanding forest recovery in wet tropical secondary forests.
    Chua SC; Potts MD
    Sci Total Environ; 2018 Nov; 642():1252-1262. PubMed ID: 30045506
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.