BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

518 related articles for article (PubMed ID: 34133714)

  • 21. A combined sequence and structure based method for discovering enriched motifs in RNA from in vivo binding data.
    Polishchuk M; Paz I; Kohen R; Mesika R; Yakhini Z; Mandel-Gutfreund Y
    Methods; 2017 Apr; 118-119():73-81. PubMed ID: 28274760
    [TBL] [Abstract][Full Text] [Related]  

  • 22. rMAPS: RNA map analysis and plotting server for alternative exon regulation.
    Park JW; Jung S; Rouchka EC; Tseng YT; Xing Y
    Nucleic Acids Res; 2016 Jul; 44(W1):W333-8. PubMed ID: 27174931
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Binding specificities of human RNA-binding proteins toward structured and linear RNA sequences.
    Jolma A; Zhang J; Mondragón E; Morgunova E; Kivioja T; Laverty KU; Yin Y; Zhu F; Bourenkov G; Morris Q; Hughes TR; Maher LJ; Taipale J
    Genome Res; 2020 Jul; 30(7):962-973. PubMed ID: 32703884
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Diverse RNA-binding proteins interact with functionally related sets of RNAs, suggesting an extensive regulatory system.
    Hogan DJ; Riordan DP; Gerber AP; Herschlag D; Brown PO
    PLoS Biol; 2008 Oct; 6(10):e255. PubMed ID: 18959479
    [TBL] [Abstract][Full Text] [Related]  

  • 25. RBPmap: A Tool for Mapping and Predicting the Binding Sites of RNA-Binding Proteins Considering the Motif Environment.
    Paz I; Argoetti A; Cohen N; Even N; Mandel-Gutfreund Y
    Methods Mol Biol; 2022; 2404():53-65. PubMed ID: 34694603
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Computational Identification of Post Translational Modification Regulated RNA Binding Protein Motifs.
    Brown AS; Mohanty BK; Howe PH
    PLoS One; 2015; 10(9):e0137696. PubMed ID: 26368004
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Systematic proteomics of endogenous human cohesin reveals an interaction with diverse splicing factors and RNA-binding proteins required for mitotic progression.
    Kim JS; He X; Liu J; Duan Z; Kim T; Gerard J; Kim B; Pillai MM; Lane WS; Noble WS; Budnik B; Waldman T
    J Biol Chem; 2019 May; 294(22):8760-8772. PubMed ID: 31010829
    [TBL] [Abstract][Full Text] [Related]  

  • 28. RNA-Binding Proteins in Cancer: Old Players and New Actors.
    Pereira B; Billaud M; Almeida R
    Trends Cancer; 2017 Jul; 3(7):506-528. PubMed ID: 28718405
    [TBL] [Abstract][Full Text] [Related]  

  • 29. RNA Bind-n-Seq: Measuring the Binding Affinity Landscape of RNA-Binding Proteins.
    Lambert NJ; Robertson AD; Burge CB
    Methods Enzymol; 2015; 558():465-493. PubMed ID: 26068750
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A large-scale binding and functional map of human RNA-binding proteins.
    Van Nostrand EL; Freese P; Pratt GA; Wang X; Wei X; Xiao R; Blue SM; Chen JY; Cody NAL; Dominguez D; Olson S; Sundararaman B; Zhan L; Bazile C; Bouvrette LPB; Bergalet J; Duff MO; Garcia KE; Gelboin-Burkhart C; Hochman M; Lambert NJ; Li H; McGurk MP; Nguyen TB; Palden T; Rabano I; Sathe S; Stanton R; Su A; Wang R; Yee BA; Zhou B; Louie AL; Aigner S; Fu XD; Lécuyer E; Burge CB; Graveley BR; Yeo GW
    Nature; 2020 Jul; 583(7818):711-719. PubMed ID: 32728246
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transposable elements modulate human RNA abundance and splicing via specific RNA-protein interactions.
    Kelley DR; Hendrickson DG; Tenen D; Rinn JL
    Genome Biol; 2014 Dec; 15(12):537. PubMed ID: 25572935
    [TBL] [Abstract][Full Text] [Related]  

  • 32. rec-Y3H screening allows the detection of simultaneous RNA-protein interface mutations.
    Garriga-Canut M; Yang JS; Preusser F; Speroni S; Gili M; Maurer SP
    Methods; 2020 Jun; 178():19-32. PubMed ID: 31493518
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Prediction of binding property of RNA-binding proteins using multi-sized filters and multi-modal deep convolutional neural network.
    Chung T; Kim D
    PLoS One; 2019; 14(4):e0216257. PubMed ID: 31026297
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pervasive Chromatin-RNA Binding Protein Interactions Enable RNA-Based Regulation of Transcription.
    Xiao R; Chen JY; Liang Z; Luo D; Chen G; Lu ZJ; Chen Y; Zhou B; Li H; Du X; Yang Y; San M; Wei X; Liu W; Lécuyer E; Graveley BR; Yeo GW; Burge CB; Zhang MQ; Zhou Y; Fu XD
    Cell; 2019 Jun; 178(1):107-121.e18. PubMed ID: 31251911
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Prediction of RNA-protein sequence and structure binding preferences using deep convolutional and recurrent neural networks.
    Pan X; Rijnbeek P; Yan J; Shen HB
    BMC Genomics; 2018 Jul; 19(1):511. PubMed ID: 29970003
    [TBL] [Abstract][Full Text] [Related]  

  • 36. CLIPing the brain: studies of protein-RNA interactions important for neurodegenerative disorders.
    Modic M; Ule J; Sibley CR
    Mol Cell Neurosci; 2013 Sep; 56():429-35. PubMed ID: 23583633
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Interactions between RNA-binding proteins and P32 homologues in trypanosomes and human cells.
    Polledo JM; Cervini G; Romaniuk MA; Cassola A
    Curr Genet; 2016 Feb; 62(1):203-12. PubMed ID: 26385742
    [TBL] [Abstract][Full Text] [Related]  

  • 38. CLIPdb: a CLIP-seq database for protein-RNA interactions.
    Yang YC; Di C; Hu B; Zhou M; Liu Y; Song N; Li Y; Umetsu J; Lu ZJ
    BMC Genomics; 2015 Feb; 16(1):51. PubMed ID: 25652745
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tandem RNA isolation reveals functional rearrangement of RNA-binding proteins on
    Iadevaia V; Wouters MD; Kanitz A; Matia-González AM; Laing EE; Gerber AP
    RNA Biol; 2020 Jan; 17(1):33-46. PubMed ID: 31522610
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Finding RNA structure in the unstructured RBPome.
    Orenstein Y; Ohler U; Berger B
    BMC Genomics; 2018 Feb; 19(1):154. PubMed ID: 29463232
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.