BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 34133786)

  • 1. Density-Dependent Metabolic Costs of Copper Exposure in a Coastal Copepod.
    Lode T; Heuschele J; Andersen T; Titelman J; Hylland K; Borgå K
    Environ Toxicol Chem; 2021 Sep; 40(9):2538-2546. PubMed ID: 34133786
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contrasting Effects of Predation Risk and Copper on Copepod Respiration Rates.
    Lode T; Heuschele J; Andersen T; Titelman J; Hylland K; Borgå K
    Environ Toxicol Chem; 2020 Sep; 39(9):1765-1773. PubMed ID: 32557750
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Hidden Dimension: Context-Dependent Expression of Repeatable Behavior in Copepods.
    Heuschele J; Lode T; Andersen T; Titelman J
    Environ Toxicol Chem; 2020 May; 39(5):1017-1026. PubMed ID: 32072680
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genotoxic Response and Mortality in 3 Marine Copepods Exposed to Waterborne Copper.
    Sahlmann A; Lode T; Heuschele J; Borgå K; Titelman J; Hylland K
    Environ Toxicol Chem; 2019 Oct; 38(10):2224-2232. PubMed ID: 31343775
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predation Risk Potentiates Toxicity of a Common Metal Contaminant in a Coastal Copepod.
    Lode T; Heuschele J; Andersen T; Titelman J; Hylland K; Borgå K
    Environ Sci Technol; 2018 Nov; 52(22):13535-13542. PubMed ID: 30338992
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acute and chronic toxicities of zinc pyrithione alone and in combination with copper to the marine copepod Tigriopus japonicus.
    Bao VW; Lui GC; Leung KM
    Aquat Toxicol; 2014 Dec; 157():81-93. PubMed ID: 25456222
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Joint effects of temperature and copper exposure on developmental and gene-expression responses of the marine copepod Tigriopus japonicus.
    Li AJ; Lai RWS; Zhou GJ; Leung PTY; Zeng EY; Leung KMY
    Ecotoxicology; 2023 Apr; 32(3):336-343. PubMed ID: 36964297
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sensitivity of the Marine Calanoid Copepod Pseudodiaptomus pelagicus to Copper, Phenanthrene, and Ammonia.
    Kennedy AJ; Biber TW; May LR; Lotufo GR; Farrar JD; Bednar AJ
    Environ Toxicol Chem; 2019 Jun; 38(6):1221-1230. PubMed ID: 30790342
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Behavioral effects of copper on larval white sturgeon.
    Puglis HJ; Calfee RD; Little EE
    Environ Toxicol Chem; 2019 Jan; 38(1):132-144. PubMed ID: 30298941
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acclimation effect and fitness cost of copper resistance in the marine copepod Tigriopus japonicus.
    Kwok KW; Grist EP; Leung KM
    Ecotoxicol Environ Saf; 2009 Feb; 72(2):358-64. PubMed ID: 18842299
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The copepod Tigriopus: a promising marine model organism for ecotoxicology and environmental genomics.
    Raisuddin S; Kwok KW; Leung KM; Schlenk D; Lee JS
    Aquat Toxicol; 2007 Jul; 83(3):161-73. PubMed ID: 17560667
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Effects of Nickel and Copper on Tropical Marine and Freshwater Microalgae Using Single and Multispecies Tests.
    McKnight KS; Gissi F; Adams MS; Stone S; Jolley D; Stauber J
    Environ Toxicol Chem; 2023 Apr; 42(4):901-913. PubMed ID: 36896707
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigating the Ecotoxicity of Select Emerging Organic Contaminants Toward the Marine Copepod Gladioferens pectinatus.
    Barrick A; Champeau O; Butler J; Wiles T; Boundy M; Tremblay LA
    Environ Toxicol Chem; 2022 Mar; 41(3):792-799. PubMed ID: 34918376
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toxicity of antifouling biocides to the intertidal harpacticoid copepod Tigriopus japonicus (Crustacea, Copepoda): effects of temperature and salinity.
    Kwok KW; Leung KM
    Mar Pollut Bull; 2005; 51(8-12):830-7. PubMed ID: 16291193
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acute and chronic toxicities of Irgarol alone and in combination with copper to the marine copepod Tigriopus japonicus.
    Bao VW; Leung KM; Lui GC; Lam MH
    Chemosphere; 2013 Jan; 90(3):1140-8. PubMed ID: 23069205
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deriving a Chronic Guideline Value for Nickel in Tropical and Temperate Marine Waters.
    Gissi F; Wang Z; Batley GE; Leung KMY; Schlekat CE; Garman ER; Stauber JL
    Environ Toxicol Chem; 2020 Dec; 39(12):2540-2551. PubMed ID: 32955772
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acute copper toxicity in the euryhaline copepod Acartia tonsa: implications for the development of an estuarine and marine biotic ligand model.
    Pinho GL; Bianchini A
    Environ Toxicol Chem; 2010 Aug; 29(8):1834-40. PubMed ID: 20821639
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potential of the small cyclopoid copepod Paracyclopina nana as an invertebrate model for ecotoxicity testing.
    Dahms HU; Won EJ; Kim HS; Han J; Park HG; Souissi S; Raisuddin S; Lee JS
    Aquat Toxicol; 2016 Nov; 180():282-294. PubMed ID: 27770640
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of copper on olfactory, behavioral, and other sublethal responses of saltwater organisms: Are estimated chronic limits using the biotic ligand model protective?
    DeForest DK; Gensemer RW; Gorsuch JW; Meyer JS; Santore RC; Shephard BK; Zodrow JM
    Environ Toxicol Chem; 2018 Jun; 37(6):1515-1522. PubMed ID: 29442368
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel index based on planktonic copepod reproductive traits as a tool for marine ecotoxicology studies.
    Hussain MB; Laabir M; Daly Yahia MN
    Sci Total Environ; 2020 Jul; 727():138621. PubMed ID: 32498212
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.