These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 34134196)

  • 1. Growth mechanism of interfacial fluid-mixing width induced by successive nonlinear wave interactions.
    Li H; Tian B; He Z; Zhang Y
    Phys Rev E; 2021 May; 103(5-1):053109. PubMed ID: 34134196
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physics of reshock and mixing in single-mode Richtmyer-Meshkov instability.
    Schilling O; Latini M; Don WS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Aug; 76(2 Pt 2):026319. PubMed ID: 17930154
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Supernova, nuclear synthesis, fluid instabilities, and interfacial mixing.
    Abarzhi SI; Bhowmick AK; Naveh A; Pandian A; Swisher NC; Stellingwerf RF; Arnett WD
    Proc Natl Acad Sci U S A; 2019 Sep; 116(37):18184-18192. PubMed ID: 30478062
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical simulation of the Richtmyer-Meshkov instability in initially nonuniform flows and mixing with reshock.
    Bai JS; Wang B; Wang T; Liu K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 2):066319. PubMed ID: 23368050
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolution of mixing width induced by general Rayleigh-Taylor instability.
    Zhang YS; He ZW; Gao FJ; Li XL; Tian BL
    Phys Rev E; 2016 Jun; 93(6):063102. PubMed ID: 27415354
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Turbulent transport and mixing in transitional Rayleigh-Taylor unstable flow: A priori assessment of gradient-diffusion and similarity modeling.
    Schilling O; Mueschke NJ
    Phys Rev E; 2017 Dec; 96(6-1):063111. PubMed ID: 29347290
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Supernovae and the Arrow of Time.
    Abarzhi SI; Hill DL; Naveh A; Williams KC; Wright CE
    Entropy (Basel); 2022 Jun; 24(6):. PubMed ID: 35741549
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of monotone integrated large eddy simulation to Rayleigh-Taylor mixing.
    Youngs DL
    Philos Trans A Math Phys Eng Sci; 2009 Jul; 367(1899):2971-83. PubMed ID: 19531516
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Onset of turbulence in accelerated high-Reynolds-number flow.
    Zhou Y; Robey HF; Buckingham AC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 May; 67(5 Pt 2):056305. PubMed ID: 12786270
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolution of length scales and statistics of Richtmyer-Meshkov instability from direct numerical simulations.
    Tritschler VK; Zubel M; Hickel S; Adams NA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):063001. PubMed ID: 25615181
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Turbulent mixing and beyond: non-equilibrium processes from atomistic to astrophysical scales II.
    Abarzhi SI; Gauthier S; Sreenivasan KR
    Philos Trans A Math Phys Eng Sci; 2013 Nov; 371(2003):20130268. PubMed ID: 24146016
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct numerical simulation of turbulent mixing.
    Statsenko VP; Yanilkin YV; Zhmaylo VA
    Philos Trans A Math Phys Eng Sci; 2013 Nov; 371(2003):20120216. PubMed ID: 24146009
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The density ratio dependence of self-similar Rayleigh-Taylor mixing.
    Youngs DL
    Philos Trans A Math Phys Eng Sci; 2013 Nov; 371(2003):20120173. PubMed ID: 24146005
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development and validation of a turbulent-mix model for variable-density and compressible flows.
    Banerjee A; Gore RA; Andrews MJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Oct; 82(4 Pt 2):046309. PubMed ID: 21230392
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Small-scale fluctuation and scaling law of mixing in three-dimensional rotating turbulent Rayleigh-Taylor instability.
    Wei Y; Li Y; Wang Z; Yang H; Zhu Z; Qian Y; Luo KH
    Phys Rev E; 2022 Jan; 105(1-2):015103. PubMed ID: 35193283
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of initial condition spectral content on shock-driven turbulent mixing.
    Nelson NJ; Grinstein FF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):013014. PubMed ID: 26274276
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Basic hydrodynamics of Richtmyer-Meshkov-type growth and oscillations in the inertial confinement fusion-relevant conditions.
    Aglitskiy Y; Velikovich AL; Karasik M; Metzler N; Zalesak ST; Schmitt AJ; Phillips L; Gardner JH; Serlin V; Weaver JL; Obenschain SP
    Philos Trans A Math Phys Eng Sci; 2010 Apr; 368(1916):1739-68. PubMed ID: 20211882
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Some peculiar features of hydrodynamic instability development.
    Meshkov E
    Philos Trans A Math Phys Eng Sci; 2013 Nov; 371(2003):20120288. PubMed ID: 24146012
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-similar Rayleigh-Taylor mixing with accelerations varying in time and space.
    Abarzhi SI; Sreenivasan KR
    Proc Natl Acad Sci U S A; 2022 Nov; 119(47):e2118589119. PubMed ID: 36375067
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Observation of Dispersive Shock Waves, Solitons, and Their Interactions in Viscous Fluid Conduits.
    Maiden MD; Lowman NK; Anderson DV; Schubert ME; Hoefer MA
    Phys Rev Lett; 2016 Apr; 116(17):174501. PubMed ID: 27176524
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.