These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 34134267)

  • 1. Harmonic chains and the thermal diode effect.
    Kalantar N; Agarwalla BK; Segal D
    Phys Rev E; 2021 May; 103(5-1):052130. PubMed ID: 34134267
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Absence of thermal rectification in asymmetric harmonic chains with self-consistent reservoirs.
    Segal D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jan; 79(1 Pt 1):012103. PubMed ID: 19257089
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heat rectification in molecular junctions.
    Segal D; Nitzan A
    J Chem Phys; 2005 May; 122(19):194704. PubMed ID: 16161603
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crossover from ballistic to diffusive thermal transport in quantum Langevin dynamics study of a harmonic chain connected to self-consistent reservoirs.
    Roy D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jun; 77(6 Pt 1):062102. PubMed ID: 18643318
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantum heat transfer in harmonic chains with self-consistent reservoirs: exact numerical simulations.
    Bandyopadhyay M; Segal D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 1):011151. PubMed ID: 21867156
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stochastic simulation of nonequilibrium heat conduction in extended molecular junctions.
    Sharony I; Chen R; Nitzan A
    J Chem Phys; 2020 Oct; 153(14):144113. PubMed ID: 33086795
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heat rectification with a minimal model of two harmonic oscillators.
    Simón MA; Alaña A; Pons M; Ruiz-García A; Muga JG
    Phys Rev E; 2021 Jan; 103(1-1):012134. PubMed ID: 33601578
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantum thermal diode based on two interacting spinlike systems under different excitations.
    Ordonez-Miranda J; Ezzahri Y; Joulain K
    Phys Rev E; 2017 Feb; 95(2-1):022128. PubMed ID: 28297864
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonequilibrium thermal rectification at the junction of harmonic chains.
    Dmitriev SV; Kuzkin VA; Krivtsov AM
    Phys Rev E; 2023 Nov; 108(5-1):054221. PubMed ID: 38115418
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heat conduction in quantum harmonic chains with alternate masses and self-consistent thermal reservoirs.
    Neto AF; Lemos HC; Pereira E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Sep; 76(3 Pt 1):031116. PubMed ID: 17930208
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Approaching the perfect diode limit through a nonlinear interface.
    Defaveri L; Almeida AAA; Anteneodo C
    Phys Rev E; 2023 Oct; 108(4-1):044126. PubMed ID: 37978639
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ingredients of thermal rectification: the case of classical and quantum self-consistent harmonic chains of oscillators.
    Pereira E; Lemos HC; Ávila RR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Dec; 84(6 Pt 1):061135. PubMed ID: 22304068
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analytical results for a minimalist thermal diode.
    Defaveri L; Anteneodo C
    Phys Rev E; 2021 Jul; 104(1-1):014106. PubMed ID: 34412349
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Requisite ingredients for thermal rectification.
    Pereira E
    Phys Rev E; 2017 Jul; 96(1-1):012114. PubMed ID: 29347126
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal rectification and negative differential thermal conductance in harmonic chains with nonlinear system-bath coupling.
    Ming Y; Li HM; Ding ZJ
    Phys Rev E; 2016 Mar; 93(3):032127. PubMed ID: 27078312
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal rectification in anharmonic chains under an energy-conserving noise.
    Guimarães PH; Landi GT; de Oliveira MJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):062120. PubMed ID: 26764645
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generalized self-consistent reservoir model for normal and anomalous heat transport in quantum harmonic chains.
    Hattori K; Yoshikawa M
    Phys Rev E; 2019 Jun; 99(6-1):062104. PubMed ID: 31330697
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonequilibrium generalised Langevin equation for the calculation of heat transport properties in model 1D atomic chains coupled to two 3D thermal baths.
    Ness H; Stella L; Lorenz CD; Kantorovich L
    J Chem Phys; 2017 Apr; 146(16):164103. PubMed ID: 28456216
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Perfect thermal rectification in a many-body quantum Ising model.
    Pereira E
    Phys Rev E; 2019 Mar; 99(3-1):032116. PubMed ID: 30999418
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energy transport between heat baths with oscillating temperatures.
    Chen R; Gibson T; Craven GT
    Phys Rev E; 2023 Aug; 108(2-1):024148. PubMed ID: 37723696
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.