These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 34134334)

  • 1. Stationary distributions of propelled particles as a system with quenched disorder.
    Frydel D
    Phys Rev E; 2021 May; 103(5-1):052603. PubMed ID: 34134334
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intuitive view of entropy production of ideal run-and-tumble particles.
    Frydel D
    Phys Rev E; 2022 Mar; 105(3-1):034113. PubMed ID: 35428123
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Families of Fokker-Planck equations and the associated entropic form for a distinct steady-state probability distribution with a known external force field.
    Asgarani S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):022104. PubMed ID: 25768455
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fokker-Planck equation for Boltzmann-type and active particles: transfer probability approach.
    Trigger SA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Apr; 67(4 Pt 2):046403. PubMed ID: 12786497
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kappa and other nonequilibrium distributions from the Fokker-Planck equation and the relationship to Tsallis entropy.
    Shizgal BD
    Phys Rev E; 2018 May; 97(5-1):052144. PubMed ID: 29906998
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stationary superstatistics distributions of trapped run-and-tumble particles.
    Sevilla FJ; Arzola AV; Cital EP
    Phys Rev E; 2019 Jan; 99(1-1):012145. PubMed ID: 30780275
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Positing the problem of stationary distributions of active particles as third-order differential equation.
    Frydel D
    Phys Rev E; 2022 Aug; 106(2-1):024121. PubMed ID: 36109956
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Curl forces and the nonlinear Fokker-Planck equation.
    Wedemann RS; Plastino AR; Tsallis C
    Phys Rev E; 2016 Dec; 94(6-1):062105. PubMed ID: 28085349
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solving the Fokker-Planck kinetic equation on a lattice.
    Moroni D; Rotenberg B; Hansen JP; Succi S; Melchionna S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jun; 73(6 Pt 2):066707. PubMed ID: 16907023
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stationary nonequilibrium bound state of a pair of run and tumble particles.
    Le Doussal P; Majumdar SN; Schehr G
    Phys Rev E; 2021 Oct; 104(4-1):044103. PubMed ID: 34781527
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Consequences of the H theorem from nonlinear Fokker-Planck equations.
    Schwämmle V; Nobre FD; Curado EM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Oct; 76(4 Pt 1):041123. PubMed ID: 17994952
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Delay Fokker-Planck equations, Novikov's theorem, and Boltzmann distributions as small delay approximations.
    Frank TD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jul; 72(1 Pt 1):011112. PubMed ID: 16089942
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probability distributions extremizing the nonadditive entropy S(δ) and stationary states of the corresponding nonlinear Fokker-Planck equation.
    Ribeiro MS; Tsallis C; Nobre FD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Nov; 88(5):052107. PubMed ID: 24329214
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the accuracy of the Fokker-Planck and Fermi pencil beam equations for charged particle transport.
    Börgers C; Larsen EW
    Med Phys; 1996 Oct; 23(10):1749-59. PubMed ID: 8946371
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting properties of the stationary probability currents for two-species reaction systems without solving the Fokker-Planck equation.
    Mendler M; Drossel B
    Phys Rev E; 2020 Aug; 102(2-1):022208. PubMed ID: 32942514
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Colored-noise Fokker-Planck equation for the shear-induced self-diffusion process of non-Brownian particles.
    Lukassen LJ; Oberlack M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):052145. PubMed ID: 25353777
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Approach to equilibrium and nonequilibrium stationary distributions of interacting many-particle systems that are coupled to different heat baths.
    Netz RR
    Phys Rev E; 2020 Feb; 101(2-1):022120. PubMed ID: 32168558
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The lattice Fokker-Planck equation for models of wealth distribution.
    Kaushal S; Ansumali S; Boghosian B; Johnson M
    Philos Trans A Math Phys Eng Sci; 2020 Jul; 378(2175):20190401. PubMed ID: 32564726
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Empirical Fokker-Planck-based test of stationarity for time series.
    Erkal C; Cecen AA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062907. PubMed ID: 25019851
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diffusion in a bistable system: The eigenvalue spectrum of the Fokker-Planck operator and Kramers' reaction rate theory.
    Zhan Y; Shizgal BD
    Phys Rev E; 2019 Apr; 99(4-1):042101. PubMed ID: 31108642
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.