These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 34134349)
41. Quantum dynamical framework for Brownian heat engines. Agarwal GS; Chaturvedi S Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):012130. PubMed ID: 23944437 [TBL] [Abstract][Full Text] [Related]
42. Diverging, but negligible power at Carnot efficiency: Theory and experiment. Holubec V; Ryabov A Phys Rev E; 2017 Dec; 96(6-1):062107. PubMed ID: 29347419 [TBL] [Abstract][Full Text] [Related]
43. General relations between the power, efficiency, and dissipation for the irreversible heat engines in the nonlinear response regime. Iyyappan I; Ponmurugan M Phys Rev E; 2018 Jan; 97(1-1):012141. PubMed ID: 29448419 [TBL] [Abstract][Full Text] [Related]
44. Endoreversible quantum heat engines in the linear response regime. Wang H; He J; Wang J Phys Rev E; 2017 Jul; 96(1-1):012152. PubMed ID: 29347192 [TBL] [Abstract][Full Text] [Related]
45. Entropic anomaly and maximal efficiency of microscopic heat engines. Bo S; Celani A Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):050102. PubMed ID: 23767467 [TBL] [Abstract][Full Text] [Related]
46. From local force-flux relationships to internal dissipations and their impact on heat engine performance: the illustrative case of a thermoelectric generator. Apertet Y; Ouerdane H; Goupil C; Lecoeur P Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):022137. PubMed ID: 24032805 [TBL] [Abstract][Full Text] [Related]
47. Effects of the self-propulsion parity on the efficiency of a fuel-consuming active heat engine. Oh Y; Baek Y Phys Rev E; 2023 Aug; 108(2-1):024602. PubMed ID: 37723679 [TBL] [Abstract][Full Text] [Related]
48. Maximum efficiency of ideal heat engines based on a small system: correction to the Carnot efficiency at the nanoscale. Quan HT Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062134. PubMed ID: 25019751 [TBL] [Abstract][Full Text] [Related]
49. Universal Bounds on Fluctuations in Continuous Thermal Machines. Saryal S; Gerry M; Khait I; Segal D; Agarwalla BK Phys Rev Lett; 2021 Nov; 127(19):190603. PubMed ID: 34797144 [TBL] [Abstract][Full Text] [Related]
50. Onsager coefficients for systems with periodic potentials. Rosas A; Van den Broeck C; Lindenberg K Phys Rev E; 2016 Nov; 94(5-1):052129. PubMed ID: 27967176 [TBL] [Abstract][Full Text] [Related]
51. Efficiency and its bounds for thermal engines at maximum power using Newton's law of cooling. Yan H; Guo H Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 1):011146. PubMed ID: 22400551 [TBL] [Abstract][Full Text] [Related]
52. Efficiency at maximum power and efficiency fluctuations in a linear Brownian heat-engine model. Park JM; Chun HM; Noh JD Phys Rev E; 2016 Jul; 94(1-1):012127. PubMed ID: 27575096 [TBL] [Abstract][Full Text] [Related]
53. Universal Trade-Off Relation between Power and Efficiency for Heat Engines. Shiraishi N; Saito K; Tasaki H Phys Rev Lett; 2016 Nov; 117(19):190601. PubMed ID: 27858428 [TBL] [Abstract][Full Text] [Related]
54. Stationary engines in and beyond the linear response regime at the Carnot efficiency. Shiraishi N Phys Rev E; 2017 May; 95(5-1):052128. PubMed ID: 28618475 [TBL] [Abstract][Full Text] [Related]
55. Low-dissipation engines: Microscopic construction via shortcuts to adiabaticity and isothermality, the optimal relation between power and efficiency. Zhao XH; Gong ZN; Tu ZC Phys Rev E; 2022 Dec; 106(6-1):064117. PubMed ID: 36671114 [TBL] [Abstract][Full Text] [Related]
56. Strong bounds on Onsager coefficients and efficiency for three-terminal thermoelectric transport in a magnetic field. Brandner K; Saito K; Seifert U Phys Rev Lett; 2013 Feb; 110(7):070603. PubMed ID: 25166361 [TBL] [Abstract][Full Text] [Related]
57. Optimization Modeling of Irreversible Carnot Engine from the Perspective of Combining Finite Speed and Finite Time Analysis. Costea M; Petrescu S; Feidt M; Dobre C; Borcila B Entropy (Basel); 2021 Apr; 23(5):. PubMed ID: 33922290 [TBL] [Abstract][Full Text] [Related]
58. Linear and nonlinear thermodynamics of a kinetic heat engine with fast transformations. Cerino L; Puglisi A; Vulpiani A Phys Rev E; 2016 Apr; 93():042116. PubMed ID: 27176263 [TBL] [Abstract][Full Text] [Related]
60. Quantum thermodynamic cycles and quantum heat engines. Quan HT; Liu YX; Sun CP; Nori F Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Sep; 76(3 Pt 1):031105. PubMed ID: 17930197 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]