These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
268 related articles for article (PubMed ID: 34134378)
1. Comparison of the effects of continuous and accumulative exposure to nanoplastics on microalga Chlorella pyrenoidosa during chronic toxicity. Yang W; Gao P; Nie Y; Huang J; Wu Y; Wan L; Ding H; Zhang W Sci Total Environ; 2021 Sep; 788():147934. PubMed ID: 34134378 [TBL] [Abstract][Full Text] [Related]
2. Transcriptome analysis of the toxic mechanism of nanoplastics on growth, photosynthesis and oxidative stress of microalga Chlorella pyrenoidosa during chronic exposure. Yang W; Gao P; Ma G; Huang J; Wu Y; Wan L; Ding H; Zhang W Environ Pollut; 2021 Sep; 284():117413. PubMed ID: 34049161 [TBL] [Abstract][Full Text] [Related]
3. Mechanism of the inhibition and detoxification effects of the interaction between nanoplastics and microalgae Chlorella pyrenoidosa. Yang W; Gao P; Li H; Huang J; Zhang Y; Ding H; Zhang W Sci Total Environ; 2021 Aug; 783():146919. PubMed ID: 33866172 [TBL] [Abstract][Full Text] [Related]
4. Toxic effects of polystyrene nanoplastics on microalgae Chlorella vulgaris: Changes in biomass, photosynthetic pigments and morphology. Khoshnamvand M; Hanachi P; Ashtiani S; Walker TR Chemosphere; 2021 Oct; 280():130725. PubMed ID: 33964753 [TBL] [Abstract][Full Text] [Related]
5. Eco-corona formation lessens the toxic effects of polystyrene nanoplastics towards marine microalgae Chlorella sp. Natarajan L; Omer S; Jetly N; Jenifer MA; Chandrasekaran N; Suraishkumar GK; Mukherjee A Environ Res; 2020 Sep; 188():109842. PubMed ID: 32846636 [TBL] [Abstract][Full Text] [Related]
6. Mechanism of transport and toxicity response of Chlorella sorokiniana to polystyrene nanoplastics. Xu M; Zhu F; Yang Y; Liu M; Li X; Jiang Y; Feng L; Duan J; Wang W; Yuan X; Zhang X Ecotoxicol Environ Saf; 2024 Jan; 270():115901. PubMed ID: 38157799 [TBL] [Abstract][Full Text] [Related]
7. Investigation of the toxic effects of different polystyrene micro-and nanoplastics on microalgae Chlorella vulgaris by analysis of cell viability, pigment content, oxidative stress and ultrastructural changes. Hazeem LJ; Yesilay G; Bououdina M; Perna S; Cetin D; Suludere Z; Barras A; Boukherroub R Mar Pollut Bull; 2020 Jul; 156():111278. PubMed ID: 32510417 [TBL] [Abstract][Full Text] [Related]
8. Toxicity Effects of Polystyrene Nanoplastics with Different Sizes on Freshwater Microalgae Xiang Q; Zhou Y; Tan C Molecules; 2023 May; 28(9):. PubMed ID: 37175372 [TBL] [Abstract][Full Text] [Related]
9. The combined toxicity influence of microplastics and nonylphenol on microalgae Chlorella pyrenoidosa. Yang W; Gao X; Wu Y; Wan L; Tan L; Yuan S; Ding H; Zhang W Ecotoxicol Environ Saf; 2020 Jun; 195():110484. PubMed ID: 32200150 [TBL] [Abstract][Full Text] [Related]
11. Long-term toxicity of surface-charged polystyrene nanoplastics to marine planktonic species Dunaliella tertiolecta and Artemia franciscana. Bergami E; Pugnalini S; Vannuccini ML; Manfra L; Faleri C; Savorelli F; Dawson KA; Corsi I Aquat Toxicol; 2017 Aug; 189():159-169. PubMed ID: 28644993 [TBL] [Abstract][Full Text] [Related]
12. Effects of polystyrene nanoplastics and PCB-44 exposure on growth and physiological biochemistry of Chlorella vulgaris. Zheng Q; Wu H; Yan L; Zhang Y; Wang J Sci Total Environ; 2024 Mar; 918():170366. PubMed ID: 38280605 [TBL] [Abstract][Full Text] [Related]
13. Phytoplankton response to polystyrene microplastics: Perspective from an entire growth period. Mao Y; Ai H; Chen Y; Zhang Z; Zeng P; Kang L; Li W; Gu W; He Q; Li H Chemosphere; 2018 Oct; 208():59-68. PubMed ID: 29860145 [TBL] [Abstract][Full Text] [Related]
14. Acute effects of nanoplastics and microplastics on periphytic biofilms depending on particle size, concentration and surface modification. Miao L; Hou J; You G; Liu Z; Liu S; Li T; Mo Y; Guo S; Qu H Environ Pollut; 2019 Dec; 255(Pt 2):113300. PubMed ID: 31610513 [TBL] [Abstract][Full Text] [Related]
15. Effects of polystyrene nanoplastics on growth and hemolysin production of microalgae Karlodinium veneficum. Meng F; Tan L; Cai P; Wang J Aquat Toxicol; 2024 Jan; 266():106810. PubMed ID: 38134819 [TBL] [Abstract][Full Text] [Related]
16. Enhanced microalgal toxicity due to polystyrene nanoplastics and cadmium co-exposure: From the perspective of physiological and metabolomic profiles. Cao J; Liao Y; Yang W; Jiang X; Li M J Hazard Mater; 2022 Apr; 427():127937. PubMed ID: 34863563 [TBL] [Abstract][Full Text] [Related]
17. Single and combined toxicity of polystyrene nanoplastics and copper on Platymonas helgolandica var. tsingtaoensis: Perspectives from growth inhibition, chlorophyll content and oxidative stress. Gao ZY; Wang SC; Zhang YX; Liu FF Sci Total Environ; 2022 Jul; 829():154571. PubMed ID: 35304149 [TBL] [Abstract][Full Text] [Related]
18. Algal extracellular polymeric substances (algal-EPS) for mitigating the combined toxic effects of polystyrene nanoplastics and nano-TiO Natarajan L; Annie Jenifer M; Peijnenburg WJGM; Mukherjee A Nanotoxicology; 2023 Mar; 17(2):143-156. PubMed ID: 36789517 [TBL] [Abstract][Full Text] [Related]
19. Integrating transcriptomics and biochemical analysis to understand the interactive mechanisms of the coexisting exposure of nanoplastics and erythromycin on Chlorella pyrenoidosa. Yang W; Gao P; Liu D; Wang W; Wang H; Zhu L Chemosphere; 2024 Feb; 349():140869. PubMed ID: 38061561 [TBL] [Abstract][Full Text] [Related]
20. Combined effect of polystyrene microplastics and dibutyl phthalate on the microalgae Chlorella pyrenoidosa. Li Z; Yi X; Zhou H; Chi T; Li W; Yang K Environ Pollut; 2020 Feb; 257():113604. PubMed ID: 31761578 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]