These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 34134408)
1. Polyhydroxybutyrate production from dark-fermentative effluent and composite grafting with bagasse derived α-cellulose in a biorefinery approach. Kumar AN; Katakojwala R; Amulya K; Mohan SV Chemosphere; 2021 Sep; 279():130563. PubMed ID: 34134408 [TBL] [Abstract][Full Text] [Related]
2. Efficient bioconversion of sugarcane bagasse into polyhydroxybutyrate (PHB) by Lysinibacillus sp. and its characterization. Saratale RG; Cho SK; Saratale GD; Ghodake GS; Bharagava RN; Kim DS; Nair S; Shin HS Bioresour Technol; 2021 Mar; 324():124673. PubMed ID: 33445010 [TBL] [Abstract][Full Text] [Related]
3. Optimization of hydrogen and organic acids productions with autochthonous and allochthonous bacteria from sugarcane bagasse in batch reactors. Rabelo CABS; Soares LA; Sakamoto IK; Silva EL; Varesche MBA J Environ Manage; 2018 Oct; 223():952-963. PubMed ID: 30007891 [TBL] [Abstract][Full Text] [Related]
4. Fermentative valorisation of xylose-rich hemicellulosic hydrolysates from agricultural waste residues for lactic acid production under non-sterile conditions. Cox R; Narisetty V; Castro E; Agrawal D; Jacob S; Kumar G; Kumar D; Kumar V Waste Manag; 2023 Jul; 166():336-345. PubMed ID: 37209430 [TBL] [Abstract][Full Text] [Related]
5. Deoiled algal biomass derived renewable sugars for bioethanol and biopolymer production in biorefinery framework. Naresh Kumar A; Chatterjee S; Hemalatha M; Althuri A; Min B; Kim SH; Venkata Mohan S Bioresour Technol; 2020 Jan; 296():122315. PubMed ID: 31706890 [TBL] [Abstract][Full Text] [Related]
6. Enhanced enzymatic hydrolysis and hydrogen production of sugarcane bagasse pretreated by peroxyformic acid. Bu J; Wang YT; Deng MC; Zhu MJ Bioresour Technol; 2021 Apr; 326():124751. PubMed ID: 33535152 [TBL] [Abstract][Full Text] [Related]
7. Catalytic hydrothermal deoxygenation of sugarcane bagasse for energy dense bio-oil and aqueous fraction acidogenesis for biohydrogen production. Kopperi H; Venkata Mohan S Bioresour Technol; 2023 Jul; 379():128954. PubMed ID: 36963697 [TBL] [Abstract][Full Text] [Related]
8. Cellulosic and hemicellulosic fractions of sugarcane bagasse: Potential, challenges and future perspective. Alokika ; Anu ; Kumar A; Kumar V; Singh B Int J Biol Macromol; 2021 Feb; 169():564-582. PubMed ID: 33385447 [TBL] [Abstract][Full Text] [Related]
9. Biodegradable alternative for removing toxic compounds from sugarcane bagasse hemicellulosic hydrolysates for valorization in biorefineries. Silva-Fernandes T; Santos JC; Hasmann F; Rodrigues RCLB; Izario Filho HJ; Felipe MGA Bioresour Technol; 2017 Nov; 243():384-392. PubMed ID: 28683391 [TBL] [Abstract][Full Text] [Related]
10. Green composites made of polyhydroxybutyrate and long-chain fatty acid esterified microcrystalline cellulose from pineapple leaf. Sinsukudomchai P; Aht-Ong D; Honda K; Napathorn SC PLoS One; 2023; 18(3):e0282311. PubMed ID: 36867618 [TBL] [Abstract][Full Text] [Related]
11. Effect of hydrothermal and Ca(OH) Mustafa AM; Li H; Radwan AA; Sheng K; Chen X Bioresour Technol; 2018 Jul; 259():54-60. PubMed ID: 29536874 [TBL] [Abstract][Full Text] [Related]
12. Enzymatic in situ saccharification of sugarcane bagasse pretreated with low loading of alkalic salts Na Jiang CX; He YC; Chong GG; Di JH; Tang YJ; Ma CL J Biotechnol; 2017 Oct; 259():73-82. PubMed ID: 28797630 [TBL] [Abstract][Full Text] [Related]
13. Effects of Cellulose Nanocrystals and Cellulose Nanofibers on the Structure and Properties of Polyhydroxybutyrate Nanocomposites. Zhang B; Huang C; Zhao H; Wang J; Yin C; Zhang L; Zhao Y Polymers (Basel); 2019 Dec; 11(12):. PubMed ID: 31835805 [TBL] [Abstract][Full Text] [Related]
14. Pretreatment of sugarcane bagasse with NH4OH-H2O2 and ionic liquid for efficient hydrolysis and bioethanol production. Zhu Z; Zhu M; Wu Z Bioresour Technol; 2012 Sep; 119():199-207. PubMed ID: 22728201 [TBL] [Abstract][Full Text] [Related]
15. Isolation of Paraclostridium CR4 from sugarcane bagasse and its evaluation in the bioconversion of lignocellulosic feedstock into hydrogen by monitoring cellulase gene expression. Silva Rabelo CAB; Okino CH; Sakamoto IK; Varesche MBA Sci Total Environ; 2020 May; 715():136868. PubMed ID: 32014768 [TBL] [Abstract][Full Text] [Related]
16. The production, recovery, and valorization of polyhydroxybutyrate (PHB) based on circular bioeconomy. Wang J; Huang J; Liu S Biotechnol Adv; 2024; 72():108340. PubMed ID: 38537879 [TBL] [Abstract][Full Text] [Related]
17. Coupled production of single cell oil as biodiesel feedstock, xylitol and xylanase from sugarcane bagasse in a biorefinery concept using fungi from the tropical mangrove wetlands. Kamat S; Khot M; Zinjarde S; RaviKumar A; Gade WN Bioresour Technol; 2013 May; 135():246-53. PubMed ID: 23260270 [TBL] [Abstract][Full Text] [Related]
18. Exopolysaccharide (pullulan) production from sugarcane bagasse hydrolysate aiming to favor the development of biorefineries. Terán Hilares R; Resende J; Orsi CA; Ahmed MA; Lacerda TM; da Silva SS; Santos JC Int J Biol Macromol; 2019 Apr; 127():169-177. PubMed ID: 30639656 [TBL] [Abstract][Full Text] [Related]
19. Biobutanol production from sugarcane bagasse by Clostridium beijerinckii strains. Narayanasamy S; Chan KL; Cai H; Abdul Razak AHB; Tay BK; Miao H Biotechnol Appl Biochem; 2020 Sep; 67(5):732-737. PubMed ID: 31758710 [TBL] [Abstract][Full Text] [Related]
20. Enhancing the bioproduction of value-added aroma compounds via solid-state fermentation of sugarcane bagasse and sugar beet molasses: Operational strategies and scaling-up of the process. Martínez O; Sánchez A; Font X; Barrena R Bioresour Technol; 2018 Sep; 263():136-144. PubMed ID: 29738976 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]