These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 34134423)
1. Reclamation competence of Crotalaria juncea with the amalgamation and influence of indigenous bacteria on a waste dump of bauxite mine. Narayanan M; Thangabalu R; Natarajan D; Kumarasamy S; Kandasamy S; Elfasakhany A; Pugazhendhi A Chemosphere; 2021 Sep; 279():130632. PubMed ID: 34134423 [TBL] [Abstract][Full Text] [Related]
2. Isolation and Characterization of Pb-Solubilizing Bacteria and Their Effects on Pb Uptake by Yahaghi Z; Shirvani M; Nourbakhsh F; de la Peña TC; Pueyo JJ; Talebi M J Microbiol Biotechnol; 2018 Jul; 28(7):1156-1167. PubMed ID: 29975995 [TBL] [Abstract][Full Text] [Related]
3. Effects of compost and technosol amendments on metal concentrations in a mine soil planted with Brassica juncea L. Forján R; Rodríguez-Vila A; Cerqueira B; Covelo EF Environ Sci Pollut Res Int; 2018 Jul; 25(20):19713-19727. PubMed ID: 29736648 [TBL] [Abstract][Full Text] [Related]
4. Using compost and technosol combined with biochar and Brassica juncea L. to decrease the bioavailable metal concentration in soil from a copper mine settling pond. Forján R; Rodríguez-Vila A; Covelo EF Environ Sci Pollut Res Int; 2018 Jan; 25(2):1294-1305. PubMed ID: 29086173 [TBL] [Abstract][Full Text] [Related]
5. Effect of bacterial inoculation of strains of Pseudomonas aeruginosa, Alcaligenes feacalis and Bacillus subtilis on germination, growth and heavy metal (Cd, Cr, and Ni) uptake of Brassica juncea. Ndeddy Aka RJ; Babalola OO Int J Phytoremediation; 2016; 18(2):200-9. PubMed ID: 26503637 [TBL] [Abstract][Full Text] [Related]
6. Recovering a copper mine soil using organic amendments and phytomanagement with Brassica juncea L. Rodríguez-Vila A; Covelo EF; Forján R; Asensio V J Environ Manage; 2015 Jan; 147():73-80. PubMed ID: 25262389 [TBL] [Abstract][Full Text] [Related]
7. Accumulation of heavy metals in native Andean plants: potential tools for soil phytoremediation in Ancash (Peru). Chang Kee J; Gonzales MJ; Ponce O; Ramírez L; León V; Torres A; Corpus M; Loayza-Muro R Environ Sci Pollut Res Int; 2018 Dec; 25(34):33957-33966. PubMed ID: 30280335 [TBL] [Abstract][Full Text] [Related]
8. Phytoremediation proficiency of Jatropha gossypifolia under the influence of Pseudomonas aeruginosa on metal contaminated soil. Lan Chi NT; Thu Hương ĐT; Đạo P; Lapcik V Environ Res; 2023 Sep; 232():116295. PubMed ID: 37263472 [TBL] [Abstract][Full Text] [Related]
9. Phytoremediation efficiency of Vigna mungo with the amalgamation of indigenous metal tolerant bacterial strain on metal polluted agriculture soil. Chau TP; Devanesan S; Farhat K; Liu X; Jhanani GK Environ Res; 2023 Sep; 232():116291. PubMed ID: 37276971 [TBL] [Abstract][Full Text] [Related]
10. [Promotion effects of microorganisms on phytoremediation of heavy metals-contaminated soil]. Yang Z; Wang ZL; Li BW; Zhang RF Ying Yong Sheng Tai Xue Bao; 2009 Aug; 20(8):2025-31. PubMed ID: 19947228 [TBL] [Abstract][Full Text] [Related]
11. Effects of inoculation of plant growth-promoting rhizobacteria on metal uptake by Brassica juncea. Wu SC; Cheung KC; Luo YM; Wong MH Environ Pollut; 2006 Mar; 140(1):124-35. PubMed ID: 16150522 [TBL] [Abstract][Full Text] [Related]
12. Chromium phytoextraction from tannery effluent-contaminated soil by Crotalaria juncea infested with Pseudomonas fluorescens. Agarwal A; Singh HP; Rai JP Environ Sci Pollut Res Int; 2014; 21(13):7938-44. PubMed ID: 24659403 [TBL] [Abstract][Full Text] [Related]
13. Phytoremediation of mine tailings by Brassica juncea inoculated with plant growth-promoting bacteria. Mendoza-Hernández JC; Vázquez-Delgado OR; Castillo-Morales M; Varela-Caselis JL; Santamaría-Juárez JD; Olivares-Xometl O; Arriola Morales J; Pérez-Osorio G Microbiol Res; 2019 Nov; 228():126308. PubMed ID: 31430656 [TBL] [Abstract][Full Text] [Related]
14. Assessment of PGP traits of Narayanan M; Pugazhendhi A; Ma Y Front Plant Sci; 2022; 13():1017043. PubMed ID: 36311057 [TBL] [Abstract][Full Text] [Related]
15. Analysis of transgenic Indian mustard plants for phytoremediation of metal-contaminated mine tailings. Bennett LE; Burkhead JL; Hale KL; Terry N; Pilon M; Pilon-Smits EA J Environ Qual; 2003; 32(2):432-40. PubMed ID: 12708665 [TBL] [Abstract][Full Text] [Related]
16. Characterization and bioremediation potential of native heavy-metal tolerant bacteria isolated from rat-hole coal mine environment. Shylla L; Barik SK; Joshi SR Arch Microbiol; 2021 Jul; 203(5):2379-2392. PubMed ID: 33665708 [TBL] [Abstract][Full Text] [Related]
17. Heavy metal pollution caused by small-scale metal ore mining activities: A case study from a polymetallic mine in South China. Sun Z; Xie X; Wang P; Hu Y; Cheng H Sci Total Environ; 2018 Oct; 639():217-227. PubMed ID: 29787905 [TBL] [Abstract][Full Text] [Related]
18. Phytoremediation of heavy-metal-polluted soils: screening for new accumulator plants in Angouran mine (Iran) and evaluation of removal ability. Chehregani A; Noori M; Yazdi HL Ecotoxicol Environ Saf; 2009 Jul; 72(5):1349-53. PubMed ID: 19386362 [TBL] [Abstract][Full Text] [Related]
19. Phytoremediation potential of some agricultural plants on heavy metal contaminated mine waste soils, salem district, tamilnadu. Padmapriya S; Murugan N; Ragavendran C; Thangabalu R; Natarajan D Int J Phytoremediation; 2016; 18(3):288-94. PubMed ID: 26366709 [TBL] [Abstract][Full Text] [Related]
20. Stabilization of metals in acidic mine spoil with amendments and red fescue (Festuca rubra L.) growth. Simon L Environ Geochem Health; 2005 Dec; 27(4):289-300. PubMed ID: 16027964 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]