These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 34134484)

  • 41. Preparation and characterization of biodegradable polyhydroxybutyrate-co-hydroxyvalerate/polyethylene glycol-based microspheres.
    Monnier A; Rombouts C; Kouider D; About I; Fessi H; Sheibat-Othman N
    Int J Pharm; 2016 Nov; 513(1-2):49-61. PubMed ID: 27593898
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Preparation of polypseudorotaxanes composed of cyclodextrin and polymers in microspheres.
    Shinohara K; Yamashita M; Uchida W; Okabe C; Oshima S; Sugino M; Egawa Y; Miki R; Hosoya O; Fujihara T; Ishimaru Y; Kishino T; Seki T; Juni K
    Chem Pharm Bull (Tokyo); 2014; 62(10):962-6. PubMed ID: 25273055
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Supramolecular hydrogels based on poly (ethylene glycol)-poly (lactic acid) block copolymer micelles and α-cyclodextrin for potential injectable drug delivery system.
    Poudel AJ; He F; Huang L; Xiao L; Yang G
    Carbohydr Polym; 2018 Aug; 194():69-79. PubMed ID: 29801860
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Fishing of beta-amylase with a SAM of alpha-cyclodextrin-poly- (ethylene glycol) conjugate.
    Kitano H; Miyamoto T; Kawasaki H
    J Colloid Interface Sci; 2004 Nov; 279(2):425-32. PubMed ID: 15464807
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Injectable supramolecular hydrogel formed from α-cyclodextrin and PEGylated arginine-functionalized poly(l-lysine) dendron for sustained MMP-9 shRNA plasmid delivery.
    Lin Q; Yang Y; Hu Q; Guo Z; Liu T; Xu J; Wu J; Kirk TB; Ma D; Xue W
    Acta Biomater; 2017 Feb; 49():456-471. PubMed ID: 27915016
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Influence of poly(ethylene glycol)-alpha-cyclodextrin complexes on stabilization and transdermal permeation of ascorbic acid.
    Davaran S; Hanaee J; Rashidi MR; Valiolah F; Hashemi M
    J Biomed Mater Res A; 2006 Sep; 78(3):590-4. PubMed ID: 16739182
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Supramolecular hydrogel formation based on inclusion complexation between poly(ethylene glycol)-modified chitosan and alpha-cyclodextrin.
    Huh KM; Cho YW; Chung H; Kwon IC; Jeong SY; Ooya T; Lee WK; Sasaki S; Yui N
    Macromol Biosci; 2004 Feb; 4(2):92-9. PubMed ID: 15468199
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Cyclodextrin modified quantum dots with tunable liquid-like behaviour.
    Zhou J; Huang J; Tian D; Li H
    Chem Commun (Camb); 2012 Apr; 48(30):3596-8. PubMed ID: 22222606
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Preparation, characterization, and in vivo evaluation of insulin-loaded PLA-PEG microspheres for controlled parenteral drug delivery.
    Sheshala R; Peh KK; Darwis Y
    Drug Dev Ind Pharm; 2009 Nov; 35(11):1364-74. PubMed ID: 19832637
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Preparation and characterization of fenofibrate-loaded PLA-PEG microspheres.
    Ren J; Yu X; Ren T; Hong H
    J Mater Sci Mater Med; 2007 Aug; 18(8):1481-7. PubMed ID: 17387589
    [TBL] [Abstract][Full Text] [Related]  

  • 51. MWNT-hybrided supramolecular hydrogel for hydrophobic camptothecin delivery.
    Mu S; Liang Y; Chen S; Zhang L; Liu T
    Mater Sci Eng C Mater Biol Appl; 2015 May; 50():294-9. PubMed ID: 25746273
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Supramolecular gels of poly-α-cyclodextrin and PEO-based copolymers for controlled drug release.
    Simões SM; Veiga F; Ribeiro AC; Figueiras AR; Taboada P; Concheiro A; Alvarez-Lorenzo C
    Eur J Pharm Biopharm; 2014 Aug; 87(3):579-88. PubMed ID: 24769064
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Controlled delivery of taxol from poly(ethylene glycol)-coated poly(lactic acid) microspheres.
    Das GS; Rao GHR ; Wilson RF; Chandy T
    J Biomed Mater Res; 2001 Apr; 55(1):96-103. PubMed ID: 11426403
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Preparation and mechanism of hydroxyapatite hollow microspheres with different surface charge by biomimetic method.
    Yang X; Tian Z; Guo K; Lu T; Ji J; Hao S; Xiao S
    J Mater Sci Mater Med; 2020 May; 31(5):47. PubMed ID: 32390082
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Stability of bovine serum albumin complexed with PEG-poly(L-histidine) diblock copolymer in PLGA microspheres.
    Kim JH; Taluja A; Knutson K; Han Bae Y
    J Control Release; 2005 Dec; 109(1-3):86-100. PubMed ID: 16266769
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Construction of a photothermal controlled-release microcapsule pesticide delivery system.
    Cen J; Li L; Huang L; Jiang G
    RSC Adv; 2022 Aug; 12(36):23387-23395. PubMed ID: 36090399
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Degradable hollow spheres based on self-assembly inclusion.
    Meng XW; Qin J; Liu Y; Fan MM; Li BJ; Zhang S; Yu XQ
    Chem Commun (Camb); 2010 Jan; 46(4):643-5. PubMed ID: 20062889
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Biocompatible magnetic and molecular dual-targeting polyelectrolyte hybrid hollow microspheres for controlled drug release.
    Du P; Zeng J; Mu B; Liu P
    Mol Pharm; 2013 May; 10(5):1705-15. PubMed ID: 23506444
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Formation of Polyrotaxane Particles via Template Assembly.
    Tardy BL; Tan S; Dam HH; Suma T; Guo J; Qiao GG; Caruso F
    Biomacromolecules; 2017 Jul; 18(7):2118-2127. PubMed ID: 28617594
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Slow-release system of pegylated lysozyme utilizing formation of polypseudorotaxanes with cyclodextrins.
    Higashi T; Hirayama F; Yamashita S; Misumi S; Arima H; Uekama K
    Int J Pharm; 2009 Jun; 374(1-2):26-32. PubMed ID: 19446755
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.