BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

371 related articles for article (PubMed ID: 34134620)

  • 1. Plankton classification with high-throughput submersible holographic microscopy and transfer learning.
    MacNeil L; Missan S; Luo J; Trappenberg T; LaRoche J
    BMC Ecol Evol; 2021 Jun; 21(1):123. PubMed ID: 34134620
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Method for Training Convolutional Neural Networks for In Situ Plankton Image Recognition and Classification Based on the Mechanisms of the Human Eye.
    Cheng X; Ren Y; Cheng K; Cao J; Hao Q
    Sensors (Basel); 2020 May; 20(9):. PubMed ID: 32370162
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Learning Diatoms Classification from a Dry Test Slide by Holographic Microscopy.
    Memmolo P; Carcagnì P; Bianco V; Merola F; Goncalves da Silva Junior A; Garcia Goncalves LM; Ferraro P; Distante C
    Sensors (Basel); 2020 Nov; 20(21):. PubMed ID: 33171757
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combining multi-marker metabarcoding and digital holography to describe eukaryotic plankton across the Newfoundland Shelf.
    MacNeil L; Desai DK; Costa M; LaRoche J
    Sci Rep; 2022 Jul; 12(1):13078. PubMed ID: 35906469
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Autofocusing and image fusion for multi-focus plankton imaging by digital holographic microscopy.
    Tang M; Liu C; Wang XP
    Appl Opt; 2020 Jan; 59(2):333-345. PubMed ID: 32225311
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Red blood cell classification in lensless single random phase encoding using convolutional neural networks.
    O'Connor T; Hawxhurst C; Shor LM; Javidi B
    Opt Express; 2020 Oct; 28(22):33504-33515. PubMed ID: 33115011
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel end-to-end classifier using domain transferred deep convolutional neural networks for biomedical images.
    Pang S; Yu Z; Orgun MA
    Comput Methods Programs Biomed; 2017 Mar; 140():283-293. PubMed ID: 28254085
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TOP-GAN: Stain-free cancer cell classification using deep learning with a small training set.
    Rubin M; Stein O; Turko NA; Nygate Y; Roitshtain D; Karako L; Barnea I; Giryes R; Shaked NT
    Med Image Anal; 2019 Oct; 57():176-185. PubMed ID: 31325721
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automatic plankton image classification combining multiple view features via multiple kernel learning.
    Zheng H; Wang R; Yu Z; Wang N; Gu Z; Zheng B
    BMC Bioinformatics; 2017 Dec; 18(Suppl 16):570. PubMed ID: 29297354
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High throughput holographic imaging-in-flow for the analysis of a wide plankton size range.
    Yourassowsky C; Dubois F
    Opt Express; 2014 Mar; 22(6):6661-73. PubMed ID: 24664015
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-throughput label-free cell detection and counting from diffraction patterns with deep fully convolutional neural networks.
    Yi F; Park S; Moon I
    J Biomed Opt; 2021 Mar; 26(3):. PubMed ID: 33686845
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced convolutional neural network for plankton identification and enumeration.
    Cheng K; Cheng X; Wang Y; Bi H; Benfield MC
    PLoS One; 2019; 14(7):e0219570. PubMed ID: 31291356
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Learning-based automatic sensing and size classification of microparticles using smartphone holographic microscopy.
    Go T; Yoon GY; Lee SJ
    Analyst; 2019 Feb; 144(5):1751-1760. PubMed ID: 30666996
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microplankton life histories revealed by holographic microscopy and deep learning.
    Bachimanchi H; Midtvedt B; Midtvedt D; Selander E; Volpe G
    Elife; 2022 Nov; 11():. PubMed ID: 36317499
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In situ digital holographic microscopy for rapid detection and monitoring of the harmful dinoflagellate, Karenia brevis.
    Barua R; Sanborn D; Nyman L; McFarland M; Moore T; Hong J; Garrett M; Nayak AR
    Harmful Algae; 2023 Mar; 123():102401. PubMed ID: 36894209
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Movies of cellular and sub-cellular motion by digital holographic microscopy.
    Mann CJ; Yu L; Kim MK
    Biomed Eng Online; 2006 Mar; 5():21. PubMed ID: 16556319
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combining deep residual neural network features with supervised machine learning algorithms to classify diverse food image datasets.
    McAllister P; Zheng H; Bond R; Moorhead A
    Comput Biol Med; 2018 Apr; 95():217-233. PubMed ID: 29549733
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Machine Learning for the Study of Plankton and Marine Snow from Images.
    Irisson JO; Ayata SD; Lindsay DJ; Karp-Boss L; Stemmann L
    Ann Rev Mar Sci; 2022 Jan; 14():277-301. PubMed ID: 34460314
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Classification of unlabeled cells using lensless digital holographic images and deep neural networks.
    Chen D; Wang Z; Chen K; Zeng Q; Wang L; Xu X; Liang J; Chen X
    Quant Imaging Med Surg; 2021 Sep; 11(9):4137-4148. PubMed ID: 34476194
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro monitoring of photoinduced necrosis in HeLa cells using digital holographic microscopy and machine learning.
    Belashov AV; Zhikhoreva AA; Belyaeva TN; Kornilova ES; Salova AV; Semenova IV; Vasyutinskii OS
    J Opt Soc Am A Opt Image Sci Vis; 2020 Feb; 37(2):346-352. PubMed ID: 32118916
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.