These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 34134987)

  • 1. Cluster-based network modeling-From snapshots to complex dynamical systems.
    Fernex D; Noack BR; Semaan R
    Sci Adv; 2021 Jun; 7(25):. PubMed ID: 34134987
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Data-driven modeling and prediction of blood glucose dynamics: Machine learning applications in type 1 diabetes.
    Woldaregay AZ; Årsand E; Walderhaug S; Albers D; Mamykina L; Botsis T; Hartvigsen G
    Artif Intell Med; 2019 Jul; 98():109-134. PubMed ID: 31383477
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlling nonlinear dynamical systems into arbitrary states using machine learning.
    Haluszczynski A; Räth C
    Sci Rep; 2021 Jun; 11(1):12991. PubMed ID: 34155228
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Dynamic paradigm in psychopathology: "chaos theory", from physics to psychiatry].
    Pezard L; Nandrino JL
    Encephale; 2001; 27(3):260-8. PubMed ID: 11488256
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting observed and hidden extreme events in complex nonlinear dynamical systems with partial observations and short training time series.
    Chen N; Majda AJ
    Chaos; 2020 Mar; 30(3):033101. PubMed ID: 32237755
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Koopman Invariant Subspaces and Finite Linear Representations of Nonlinear Dynamical Systems for Control.
    Brunton SL; Brunton BW; Proctor JL; Kutz JN
    PLoS One; 2016; 11(2):e0150171. PubMed ID: 26919740
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effective control of complex turbulent dynamical systems through statistical functionals.
    Majda AJ; Qi D
    Proc Natl Acad Sci U S A; 2017 May; 114(22):5571-5576. PubMed ID: 28507125
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Data-assisted reduced-order modeling of extreme events in complex dynamical systems.
    Wan ZY; Vlachas P; Koumoutsakos P; Sapsis T
    PLoS One; 2018; 13(5):e0197704. PubMed ID: 29795631
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Online data-driven changepoint detection for high-dimensional dynamical systems.
    Lin S; Mengaldo G; Maulik R
    Chaos; 2023 Oct; 33(10):. PubMed ID: 37831795
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Statistically accurate low-order models for uncertainty quantification in turbulent dynamical systems.
    Sapsis TP; Majda AJ
    Proc Natl Acad Sci U S A; 2013 Aug; 110(34):13705-10. PubMed ID: 23918398
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unambiguous Models and Machine Learning Strategies for Anomalous Extreme Events in Turbulent Dynamical System.
    Qi D
    Entropy (Basel); 2024 Jun; 26(6):. PubMed ID: 38920531
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Echo state network for two-dimensional turbulent moist Rayleigh-Bénard convection.
    Heyder F; Schumacher J
    Phys Rev E; 2021 May; 103(5-1):053107. PubMed ID: 34134328
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Learning dynamical systems from data: An introduction to physics-guided deep learning.
    Yu R; Wang R
    Proc Natl Acad Sci U S A; 2024 Jul; 121(27):e2311808121. PubMed ID: 38913886
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamical movement primitives: learning attractor models for motor behaviors.
    Ijspeert AJ; Nakanishi J; Hoffmann H; Pastor P; Schaal S
    Neural Comput; 2013 Feb; 25(2):328-73. PubMed ID: 23148415
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Subspace learning of dynamics on a shape manifold: a generative modeling approach.
    Yi S; Krim H
    IEEE Trans Image Process; 2014 Nov; 23(11):4907-19. PubMed ID: 25248183
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New perspectives for the prediction and statistical quantification of extreme events in high-dimensional dynamical systems.
    Sapsis TP
    Philos Trans A Math Phys Eng Sci; 2018 Aug; 376(2127):. PubMed ID: 30037931
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Learning physics-based reduced-order models from data using nonlinear manifolds.
    Geelen R; Balzano L; Wright S; Willcox K
    Chaos; 2024 Mar; 34(3):. PubMed ID: 38470262
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discovering governing equations from data by sparse identification of nonlinear dynamical systems.
    Brunton SL; Proctor JL; Kutz JN
    Proc Natl Acad Sci U S A; 2016 Apr; 113(15):3932-7. PubMed ID: 27035946
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Machine learning-based statistical closure models for turbulent dynamical systems.
    Qi D; Harlim J
    Philos Trans A Math Phys Eng Sci; 2022 Aug; 380(2229):20210205. PubMed ID: 35719064
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Universal data-based method for reconstructing complex networks with binary-state dynamics.
    Li J; Shen Z; Wang WX; Grebogi C; Lai YC
    Phys Rev E; 2017 Mar; 95(3-1):032303. PubMed ID: 28415181
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.