These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 34135057)

  • 1. Impaired TRIM16-Mediated Lysophagy in Chronic Obstructive Pulmonary Disease Pathogenesis.
    Araya J; Saito N; Hosaka Y; Ichikawa A; Kadota T; Fujita Y; Minagawa S; Hara H; Fujimoto S; Kawamoto H; Watanabe N; Ito A; Okuda K; Miyagawa H; Watanabe J; Takekoshi D; Utsumi H; Yoshida M; Hashimoto M; Wakui H; Ito S; Numata T; Mori S; Matsudaira H; Hirano J; Ohtsuka T; Nakayama K; Kuwano K
    J Immunol; 2021 Jul; 207(1):65-76. PubMed ID: 34135057
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TFEB ameliorates DEHP-induced neurotoxicity by activating GAL3/TRIM16 axis dependent lysophagy and alleviating lysosomal dysfunction.
    Xing H; Xu P; Ma Y; Li T; Zhang Y; Ding X; Liu L; Keerman M; Niu Q
    Environ Toxicol; 2024 Jul; 39(7):3779-3789. PubMed ID: 38488668
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Periplocin suppresses the growth of colorectal cancer cells by triggering LGALS3 (galectin 3)-mediated lysophagy.
    Wang K; Fu S; Dong L; Zhang D; Wang M; Wu X; Shen E; Luo L; Li C; Nice EC; Huang C; Zou B
    Autophagy; 2023 Dec; 19(12):3132-3150. PubMed ID: 37471054
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PRKN-regulated mitophagy and cellular senescence during COPD pathogenesis.
    Araya J; Tsubouchi K; Sato N; Ito S; Minagawa S; Hara H; Hosaka Y; Ichikawa A; Saito N; Kadota T; Yoshida M; Fujita Y; Utsumi H; Kobayashi K; Yanagisawa H; Hashimoto M; Wakui H; Ishikawa T; Numata T; Kaneko Y; Asano H; Yamashita M; Odaka M; Morikawa T; Nishimura SL; Nakayama K; Kuwano K
    Autophagy; 2019 Mar; 15(3):510-526. PubMed ID: 30290714
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chaperone-Mediated Autophagy Suppresses Apoptosis via Regulation of the Unfolded Protein Response during Chronic Obstructive Pulmonary Disease Pathogenesis.
    Hosaka Y; Araya J; Fujita Y; Kadota T; Tsubouchi K; Yoshida M; Minagawa S; Hara H; Kawamoto H; Watanabe N; Ito A; Ichikawa A; Saito N; Okuda K; Watanabe J; Takekoshi D; Utsumi H; Hashimoto M; Wakui H; Ito S; Numata T; Mori S; Matsudaira H; Hirano J; Ohtsuka T; Nakayama K; Kuwano K
    J Immunol; 2020 Sep; 205(5):1256-1267. PubMed ID: 32699159
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PARK2-mediated mitophagy is involved in regulation of HBEC senescence in COPD pathogenesis.
    Ito S; Araya J; Kurita Y; Kobayashi K; Takasaka N; Yoshida M; Hara H; Minagawa S; Wakui H; Fujii S; Kojima J; Shimizu K; Numata T; Kawaishi M; Odaka M; Morikawa T; Harada T; Nishimura SL; Kaneko Y; Nakayama K; Kuwano K
    Autophagy; 2015; 11(3):547-59. PubMed ID: 25714760
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cigarette smoke-induced autophagy impairment accelerates lung aging, COPD-emphysema exacerbations and pathogenesis.
    Vij N; Chandramani-Shivalingappa P; Van Westphal C; Hole R; Bodas M
    Am J Physiol Cell Physiol; 2018 Jan; 314(1):C73-C87. PubMed ID: 27413169
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Involvement of Lamin B1 Reduction in Accelerated Cellular Senescence during Chronic Obstructive Pulmonary Disease Pathogenesis.
    Saito N; Araya J; Ito S; Tsubouchi K; Minagawa S; Hara H; Ito A; Nakano T; Hosaka Y; Ichikawa A; Kadota T; Yoshida M; Fujita Y; Utsumi H; Kurita Y; Kobayashi K; Hashimoto M; Wakui H; Numata T; Kaneko Y; Asano H; Odaka M; Ohtsuka T; Morikawa T; Nakayama K; Kuwano K
    J Immunol; 2019 Mar; 202(5):1428-1440. PubMed ID: 30692212
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Galectin-3 and TRIM16 coregulate osteogenic differentiation of human bone marrow-derived mesenchymal stem cells at least partly via enhancing autophagy.
    Chen WT; Zhang F; Zhao XQ; Yu B; Wang BW
    Bone; 2020 Feb; 131():115059. PubMed ID: 31521826
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cellular senescence-an aging hallmark in chronic obstructive pulmonary disease pathogenesis.
    Araya J; Kuwano K
    Respir Investig; 2022 Jan; 60(1):33-44. PubMed ID: 34649812
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impaired mitophagy leads to cigarette smoke stress-induced cellular senescence: implications for chronic obstructive pulmonary disease.
    Ahmad T; Sundar IK; Lerner CA; Gerloff J; Tormos AM; Yao H; Rahman I
    FASEB J; 2015 Jul; 29(7):2912-29. PubMed ID: 25792665
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sensitive detection of lysosomal membrane permeabilization by lysosomal galectin puncta assay.
    Aits S; Kricker J; Liu B; Ellegaard AM; Hämälistö S; Tvingsholm S; Corcelle-Termeau E; Høgh S; Farkas T; Holm Jonassen A; Gromova I; Mortensen M; Jäättelä M
    Autophagy; 2015; 11(8):1408-24. PubMed ID: 26114578
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of Cigarette Smoke-Induced Aggresome Formation in Chronic Obstructive Pulmonary Disease-Emphysema Pathogenesis.
    Tran I; Ji C; Ni I; Min T; Tang D; Vij N
    Am J Respir Cell Mol Biol; 2015 Aug; 53(2):159-73. PubMed ID: 25490051
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative proteomics reveals the selectivity of ubiquitin-binding autophagy receptors in the turnover of damaged lysosomes by lysophagy.
    Eapen VV; Swarup S; Hoyer MJ; Paulo JA; Harper JW
    Elife; 2021 Sep; 10():. PubMed ID: 34585663
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insufficient autophagy promotes bronchial epithelial cell senescence in chronic obstructive pulmonary disease.
    Fujii S; Hara H; Araya J; Takasaka N; Kojima J; Ito S; Minagawa S; Yumino Y; Ishikawa T; Numata T; Kawaishi M; Hirano J; Odaka M; Morikawa T; Nishimura S; Nakayama K; Kuwano K
    Oncoimmunology; 2012 Aug; 1(5):630-641. PubMed ID: 22934255
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lysosome-Associated Membrane Protein 3 Induces Lysosome-Dependent Cell Death by Impairing Autophagic Caspase 8 Degradation in the Salivary Glands of Individuals With Sjögren's Disease.
    Nakamura H; Tanaka T; Zheng C; Afione SA; Warner BM; Noguchi M; Atsumi T; Chiorini JA
    Arthritis Rheumatol; 2023 Sep; 75(9):1586-1598. PubMed ID: 37096570
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TRIM16-mediated lysophagy suppresses high-glucose-accumulated neuronal Aβ.
    Chae CW; Yoon JH; Lim JR; Park JY; Cho JH; Jung YH; Choi GE; Lee HJ; Han HJ
    Autophagy; 2023 Oct; 19(10):2752-2768. PubMed ID: 37357416
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Autophagy augmentation alleviates cigarette smoke-induced CFTR-dysfunction, ceramide-accumulation and COPD-emphysema pathogenesis.
    Bodas M; Pehote G; Silverberg D; Gulbins E; Vij N
    Free Radic Biol Med; 2019 Feb; 131():81-97. PubMed ID: 30500419
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Augmentation of S-Nitrosoglutathione Controls Cigarette Smoke-Induced Inflammatory-Oxidative Stress and Chronic Obstructive Pulmonary Disease-Emphysema Pathogenesis by Restoring Cystic Fibrosis Transmembrane Conductance Regulator Function.
    Bodas M; Silverberg D; Walworth K; Brucia K; Vij N
    Antioxid Redox Signal; 2017 Sep; 27(7):433-451. PubMed ID: 28006950
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PINK1-PARK2-mediated mitophagy in COPD and IPF pathogeneses.
    Tsubouchi K; Araya J; Kuwano K
    Inflamm Regen; 2018; 38():18. PubMed ID: 30386443
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.