These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 34135123)

  • 21. Janus chaperones: assistance of both RNA- and protein-folding by ribosomal proteins.
    Kovacs D; Rakacs M; Agoston B; Lenkey K; Semrad K; Schroeder R; Tompa P
    FEBS Lett; 2009 Jan; 583(1):88-92. PubMed ID: 19071121
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pol5 is required for recycling of small subunit biogenesis factors and for formation of the peptide exit tunnel of the large ribosomal subunit.
    Braun CM; Hackert P; Schmid CE; Bohnsack MT; Bohnsack KE; Perez-Fernandez J
    Nucleic Acids Res; 2020 Jan; 48(1):405-420. PubMed ID: 31745560
    [TBL] [Abstract][Full Text] [Related]  

  • 23. RNA chaperones stimulate formation and yield of the U3 snoRNA-Pre-rRNA duplexes needed for eukaryotic ribosome biogenesis.
    Gérczei T; Shah BN; Manzo AJ; Walter NG; Correll CC
    J Mol Biol; 2009 Jul; 390(5):991-1006. PubMed ID: 19482034
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Assaying RNA chaperone activity in vivo using a novel RNA folding trap.
    Clodi E; Semrad K; Schroeder R
    EMBO J; 1999 Jul; 18(13):3776-82. PubMed ID: 10393192
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanistic Insight into the Reactivation of BCAII Enzyme from Denatured and Molten Globule States by Eukaryotic Ribosomes and Domain V rRNAs.
    Chakraborty B; Bhakta S; Sengupta J
    PLoS One; 2016; 11(4):e0153928. PubMed ID: 27099964
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structure-Based Mechanisms of a Molecular RNA Polymerase/Chaperone Machine Required for Ribosome Biosynthesis.
    Huang YH; Hilal T; Loll B; Bürger J; Mielke T; Böttcher C; Said N; Wahl MC
    Mol Cell; 2020 Sep; 79(6):1024-1036.e5. PubMed ID: 32871103
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Iterative annealing mechanism explains the functions of the GroEL and RNA chaperones.
    Thirumalai D; Lorimer GH; Hyeon C
    Protein Sci; 2020 Feb; 29(2):360-377. PubMed ID: 31800116
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Assembly of bacterial ribosomes.
    Shajani Z; Sykes MT; Williamson JR
    Annu Rev Biochem; 2011; 80():501-26. PubMed ID: 21529161
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identification of the binding site of Rlp7 on assembling 60S ribosomal subunits in Saccharomyces cerevisiae.
    Dembowski JA; Ramesh M; McManus CJ; Woolford JL
    RNA; 2013 Dec; 19(12):1639-47. PubMed ID: 24129494
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Assembly and structure of the SSU processome-a nucleolar precursor of the small ribosomal subunit.
    Barandun J; Hunziker M; Klinge S
    Curr Opin Struct Biol; 2018 Apr; 49():85-93. PubMed ID: 29414516
    [TBL] [Abstract][Full Text] [Related]  

  • 31. RNA chaperone activity of L1 ribosomal proteins: phylogenetic conservation and splicing inhibition.
    Ameres SL; Shcherbakov D; Nikonova E; Piendl W; Schroeder R; Semrad K
    Nucleic Acids Res; 2007; 35(11):3752-63. PubMed ID: 17517772
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A DEAD-box RNA helicase promotes thermodynamic equilibration of kinetically trapped RNA structures in vivo.
    Ruminski DJ; Watson PY; Mahen EM; Fedor MJ
    RNA; 2016 Mar; 22(3):416-27. PubMed ID: 26759451
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A ribosome-anchored chaperone network that facilitates eukaryotic ribosome biogenesis.
    Albanèse V; Reissmann S; Frydman J
    J Cell Biol; 2010 Apr; 189(1):69-81. PubMed ID: 20368619
    [TBL] [Abstract][Full Text] [Related]  

  • 34. RNA misfolding and the action of chaperones.
    Russell R
    Front Biosci; 2008 Jan; 13():1-20. PubMed ID: 17981525
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Another function for the mitochondrial ribosomal RNA: protein folding.
    Sulijoadikusumo I; Horikoshi N; Usheva A
    Biochemistry; 2001 Sep; 40(38):11559-64. PubMed ID: 11560505
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Global stabilization of rRNA structure by ribosomal proteins S4, S17, and S20.
    Ramaswamy P; Woodson SA
    J Mol Biol; 2009 Sep; 392(3):666-77. PubMed ID: 19616559
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The long-range P3 helix of the Tetrahymena ribozyme is disrupted during folding between the native and misfolded conformations.
    Mitchell D; Jarmoskaite I; Seval N; Seifert S; Russell R
    J Mol Biol; 2013 Aug; 425(15):2670-86. PubMed ID: 23702292
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Real-time assembly of ribonucleoprotein complexes on nascent RNA transcripts.
    Duss O; Stepanyuk GA; Grot A; O'Leary SE; Puglisi JD; Williamson JR
    Nat Commun; 2018 Nov; 9(1):5087. PubMed ID: 30504830
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Architecture of the yeast small subunit processome.
    Chaker-Margot M; Barandun J; Hunziker M; Klinge S
    Science; 2017 Jan; 355(6321):. PubMed ID: 27980088
    [TBL] [Abstract][Full Text] [Related]  

  • 40. RNA folding in vivo.
    Schroeder R; Grossberger R; Pichler A; Waldsich C
    Curr Opin Struct Biol; 2002 Jun; 12(3):296-300. PubMed ID: 12127447
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.