These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 34135315)

  • 1. A distinct growth physiology enhances bacterial growth under rapid nutrient fluctuations.
    Nguyen J; Fernandez V; Pontrelli S; Sauer U; Ackermann M; Stocker R
    Nat Commun; 2021 Jun; 12(1):3662. PubMed ID: 34135315
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phenotypic heterogeneity driven by nutrient limitation promotes growth in fluctuating environments.
    Schreiber F; Littmann S; Lavik G; Escrig S; Meibom A; Kuypers MM; Ackermann M
    Nat Microbiol; 2016 May; 1(6):16055. PubMed ID: 27572840
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic proteome trade-offs regulate bacterial cell size and growth in fluctuating nutrient environments.
    Kratz JC; Banerjee S
    Commun Biol; 2023 May; 6(1):486. PubMed ID: 37147517
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Perception and regulatory principles of microbial growth control.
    Khonsari AS; Kollmann M
    PLoS One; 2015; 10(5):e0126244. PubMed ID: 25992898
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Adaptive Response to Long-Term Nitrogen Starvation in
    Switzer A; Burchell L; McQuail J; Wigneshweraraj S
    J Bacteriol; 2020 Aug; 202(17):. PubMed ID: 32571968
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A universal trade-off between growth and lag in fluctuating environments.
    Basan M; Honda T; Christodoulou D; Hörl M; Chang YF; Leoncini E; Mukherjee A; Okano H; Taylor BR; Silverman JM; Sanchez C; Williamson JR; Paulsson J; Hwa T; Sauer U
    Nature; 2020 Aug; 584(7821):470-474. PubMed ID: 32669712
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nutrient and salt depletion synergistically boosts glucose metabolism in individual Escherichia coli cells.
    Glover G; Voliotis M; Łapińska U; Invergo BM; Soanes D; O'Neill P; Moore K; Nikolic N; Petrov PG; Milner DS; Roy S; Heesom K; Richards TA; Tsaneva-Atanasova K; Pagliara S
    Commun Biol; 2022 Apr; 5(1):385. PubMed ID: 35444215
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genomewide Stabilization of mRNA during a "Feast-to-Famine" Growth Transition in Escherichia coli.
    Morin M; Enjalbert B; Ropers D; Girbal L; Cocaign-Bousquet M
    mSphere; 2020 May; 5(3):. PubMed ID: 32434841
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bacterial persistence as a phenotypic switch.
    Balaban NQ; Merrin J; Chait R; Kowalik L; Leibler S
    Science; 2004 Sep; 305(5690):1622-5. PubMed ID: 15308767
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Different adaptive strategies in E. coli populations evolving under macronutrient limitation and metal ion limitation.
    Warsi OM; Andersson DI; Dykhuizen DE
    BMC Evol Biol; 2018 May; 18(1):72. PubMed ID: 29776341
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Frequency- and Amplitude-Dependent Microbial Population Dynamics during Cycles of Feast and Famine.
    Merritt J; Kuehn S
    Phys Rev Lett; 2018 Aug; 121(9):098101. PubMed ID: 30230885
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolite Sequestration Enables Rapid Recovery from Fatty Acid Depletion in Escherichia coli.
    Hartline CJ; Mannan AA; Liu D; Zhang F; Oyarzún DA
    mBio; 2020 Mar; 11(2):. PubMed ID: 32184249
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Robust surface-to-mass coupling and turgor-dependent cell width determine bacterial dry-mass density.
    Oldewurtel ER; Kitahara Y; van Teeffelen S
    Proc Natl Acad Sci U S A; 2021 Aug; 118(32):. PubMed ID: 34341116
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long-term experimental evolution in Escherichia coli. IV. Targets of selection and the specificity of adaptation.
    Travisano M; Lenski RE
    Genetics; 1996 May; 143(1):15-26. PubMed ID: 8722758
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bacterial Evolution in High-Osmolarity Environments.
    Cesar S; Anjur-Dietrich M; Yu B; Li E; Rojas E; Neff N; Cooper TF; Huang KC
    mBio; 2020 Aug; 11(4):. PubMed ID: 32753494
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bacterial Glycogen Provides Short-Term Benefits in Changing Environments.
    Sekar K; Linker SM; Nguyen J; Grünhagen A; Stocker R; Sauer U
    Appl Environ Microbiol; 2020 Apr; 86(9):. PubMed ID: 32111592
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Memory and fitness optimization of bacteria under fluctuating environments.
    Lambert G; Kussell E
    PLoS Genet; 2014 Sep; 10(9):e1004556. PubMed ID: 25255314
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A lung-on-chip model of early
    Thacker VV; Dhar N; Sharma K; Barrile R; Karalis K; McKinney JD
    Elife; 2020 Nov; 9():. PubMed ID: 33228849
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stochasticity of metabolism and growth at the single-cell level.
    Kiviet DJ; Nghe P; Walker N; Boulineau S; Sunderlikova V; Tans SJ
    Nature; 2014 Oct; 514(7522):376-9. PubMed ID: 25186725
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptations Accumulated under Prolonged Resource Exhaustion Are Highly Transient.
    Avrani S; Katz S; Hershberg R
    mSphere; 2020 Aug; 5(4):. PubMed ID: 32817448
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.