These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 34135359)
1. Unsteady hybrid-nanofluid flow comprising ferrousoxide and CNTs through porous horizontal channel with dilating/squeezing walls. Bilal M; Arshad H; Ramzan M; Shah Z; Kumam P Sci Rep; 2021 Jun; 11(1):12637. PubMed ID: 34135359 [TBL] [Abstract][Full Text] [Related]
2. Steady Squeezing Flow of Magnetohydrodynamics Hybrid Nanofluid Flow Comprising Carbon Nanotube-Ferrous Oxide/Water with Suction/Injection Effect. Khan MS; Mei S; Shabnam ; Ali Shah N; Chung JD; Khan A; Shah SA Nanomaterials (Basel); 2022 Feb; 12(4):. PubMed ID: 35214989 [TBL] [Abstract][Full Text] [Related]
3. Numerical Analysis of Unsteady Hybrid Nanofluid Flow Comprising CNTs-Ferrousoxide/Water with Variable Magnetic Field. Khan MS; Mei S; Shabnam ; Fernandez-Gamiz U; Noeiaghdam S; Shah SA; Khan A Nanomaterials (Basel); 2022 Jan; 12(2):. PubMed ID: 35055199 [TBL] [Abstract][Full Text] [Related]
4. Channelized water driven flow of MHD carbon-nanotube nanofluid influenced by rotation, heat source and thermal radiation. Shams M; Sarwar S PLoS One; 2023; 18(12):e0295406. PubMed ID: 38150446 [TBL] [Abstract][Full Text] [Related]
5. Irreversibility analysis of an unsteady micropolar CNT-blood nanofluid flow through a squeezing channel with activation energy-Application in drug delivery. Kumar NN; Sastry DRVSRK; Shaw S Comput Methods Programs Biomed; 2022 Nov; 226():107156. PubMed ID: 36265290 [TBL] [Abstract][Full Text] [Related]
6. Heat Transfer Enhancement in Unsteady MHD Natural Convective Flow of CNTs Oldroyd-B Nanofluid under Ramped Wall Velocity and Ramped Wall Temperature. Anwar T; Kumam P; Khan I; Watthayu W Entropy (Basel); 2020 Mar; 22(4):. PubMed ID: 33286175 [TBL] [Abstract][Full Text] [Related]
7. Computational Analysis of Nanoparticle Shapes on Hybrid Nanofluid Flow Due to Flat Horizontal Plate via Solar Collector. Imran M; Yasmin S; Waqas H; Khan SA; Muhammad T; Alshammari N; Hamadneh NN; Khan I Nanomaterials (Basel); 2022 Feb; 12(4):. PubMed ID: 35214992 [TBL] [Abstract][Full Text] [Related]
8. Entropy Generation and Statistical Analysis of MHD Hybrid Nanofluid Unsteady Squeezing Flow between Two Parallel Rotating Plates with Activation Energy. Murshid N; Mulki H; Abu-Samha M; Owhaib W; Raju SSK; Raju CSK; JayachandraBabu M; Homod RZ; Al-Kouz W Nanomaterials (Basel); 2022 Jul; 12(14):. PubMed ID: 35889605 [TBL] [Abstract][Full Text] [Related]
9. Analytical Investigation of the Time-Dependent Stagnation Point Flow of a CNT Nanofluid over a Stretching Surface. Rehman A; Saeed A; Salleh Z; Jan R; Kumam P Nanomaterials (Basel); 2022 Mar; 12(7):. PubMed ID: 35407226 [TBL] [Abstract][Full Text] [Related]
10. Free Convective Flow of Hamilton-Crosser Model Gold-water Nanofluid Through a Channel with Permeable Moving Walls. Pattnaik PK; Abbas MA; Mishra S; Khan SU; Bhatti MM Comb Chem High Throughput Screen; 2022; 25(7):1103-1114. PubMed ID: 34391375 [TBL] [Abstract][Full Text] [Related]
11. Unsteady squeezing flow of Cu-Al Khashi'ie NS; Waini I; Arifin NM; Pop I Sci Rep; 2021 Jul; 11(1):14128. PubMed ID: 34238991 [TBL] [Abstract][Full Text] [Related]
12. A comparative study of finite difference approach and bvp4c techniques for water base hybrid nanofluid containing multiple walls carbon nanotubes and magnetic oxide. Manigandan J; Iranian D; Omer ASA; Aljohani AF; Khan I Sci Rep; 2024 Oct; 14(1):24394. PubMed ID: 39420053 [TBL] [Abstract][Full Text] [Related]
13. Effect of non-uniform heat rise/fall and porosity on MHD Williamson hybrid nanofluid flow over incessantly moving thin needle. Abbas A; Hussanan A; Obalalu AM; Kriaa K; Maatki C; Hadrich B; Aslam M; Kolsi L Heliyon; 2024 Jan; 10(1):e23588. PubMed ID: 38187268 [TBL] [Abstract][Full Text] [Related]
14. Dissipated electroosmotic EMHD hybrid nanofluid flow through the micro-channel. Bilal M; Asghar I; Ramzan M; Nisar KS; Aty AA; Yahia IS; Ghazwani HAS Sci Rep; 2022 Mar; 12(1):4771. PubMed ID: 35306508 [TBL] [Abstract][Full Text] [Related]
15. Comparative study of hybrid, tri-hybrid and tetra-hybrid nanoparticles in MHD unsteady flow with chemical reaction, activation energy, Soret-Dufour effect and sensitivity analysis over Non-Darcy porous stretching cylinder. M A; De P Heliyon; 2024 Aug; 10(15):e35731. PubMed ID: 39170345 [TBL] [Abstract][Full Text] [Related]
16. Gyrotactic microorganism hybrid nanofluid over a Riga plate subject to activation energy and heat source: numerical approach. Algehyne EA; Saeed A; Arif M; Bilal M; Kumam P; Galal AM Sci Rep; 2023 Aug; 13(1):13675. PubMed ID: 37608049 [TBL] [Abstract][Full Text] [Related]
17. Rotating Hybrid Nanofluid Flow with Chemical Reaction and Thermal Radiation between Parallel Plates. Arshad M; Hassan A; Haider Q; Alharbi FM; Alsubaie N; Alhushaybari A; Burduhos-Nergis DP; Galal AM Nanomaterials (Basel); 2022 Nov; 12(23):. PubMed ID: 36500800 [TBL] [Abstract][Full Text] [Related]
18. The improved thermal efficiency of Prandtl-Eyring hybrid nanofluid via classical Keller box technique. Jamshed W; Baleanu D; Nasir NAAM; Shahzad F; Nisar KS; Shoaib M; Ahmad S; Ismail KA Sci Rep; 2021 Dec; 11(1):23535. PubMed ID: 34876598 [TBL] [Abstract][Full Text] [Related]
19. Analysis of Soret and Dufour effects on radiative heat transfer in hybrid bioconvective flow of carbon nanotubes. Hussain A; Raiz S; Hassan A; Hassan AM; Karamti H; Bognár G Sci Rep; 2024 May; 14(1):11970. PubMed ID: 38796613 [TBL] [Abstract][Full Text] [Related]
20. Computations for efficient thermal performance of Go + AA7072 with engine oil based hybrid nanofluid transportation across a Riga wedge. Yahya AU; Eldin SM; Alfalqui SH; Ali R; Salamat N; Siddique I; Abdal S Heliyon; 2023 Jul; 9(7):e17920. PubMed ID: 37483717 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]