BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 34136328)

  • 1. The preparation temperature influences the physicochemical nature and activity of nanoceria.
    Yokel RA; Wohlleben W; Keller JG; Hancock ML; Unrine JM; Butterfield DA; Grulke EA
    Beilstein J Nanotechnol; 2021; 12():525-540. PubMed ID: 34136328
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carboxylic acids accelerate acidic environment-mediated nanoceria dissolution.
    Yokel RA; Hancock ML; Grulke EA; Unrine JM; Dozier AK; Graham UM
    Nanotoxicology; 2019 May; 13(4):455-475. PubMed ID: 30729879
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carboxylic acids and light interact to affect nanoceria stability and dissolution in acidic aqueous environments.
    Hancock ML; Grulke EA; Yokel RA
    Beilstein J Nanotechnol; 2023; 14():762-780. PubMed ID: 37405151
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface-controlled dissolution rates: a case study of nanoceria in carboxylic acid solutions.
    Grulke EA; Beck MJ; Yokel RA; Unrine JM; Graham UM; Hancock ML
    Environ Sci Nano; 2019 May; 6(5):1478-1492. PubMed ID: 31372227
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoceria dissolution at acidic pH by breaking off the catalytic loop.
    Galyamin D; Ernst LM; Fitó-Parera A; Mira-Vidal G; Bastús NG; Sabaté N; Puntes V
    Nanoscale; 2022 Oct; 14(38):14223-14230. PubMed ID: 36125109
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulated biological fluid exposure changes nanoceria's surface properties but not its biological response.
    Yokel RA; Hancock ML; Cherian B; Brooks AJ; Ensor ML; Vekaria HJ; Sullivan PG; Grulke EA
    Eur J Pharm Biopharm; 2019 Nov; 144():252-265. PubMed ID: 31563633
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of Nanoceria with Varied Ratios of Ce
    Ranasinghe KS; Singh R; Leshchev D; Vasquez A; Stavitski E; Foster I
    Nanomaterials (Basel); 2022 Jul; 12(14):. PubMed ID: 35889588
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Redox Reactivity of Colloidal Nanoceria and Use of Optical Spectra as an In Situ Monitor of Ce Oxidation States.
    Damatov D; Laga SM; Mader EA; Peng J; Agarwal RG; Mayer JM
    Inorg Chem; 2018 Nov; 57(22):14401-14408. PubMed ID: 30387346
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of DNA Damage Induced by Cerium Dioxide Nanoparticles: From Models to Molecular Mechanism Activated.
    de Souza TAJ; Rocha TL; Franchi LP
    Adv Exp Med Biol; 2018; 1048():215-226. PubMed ID: 29453541
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stability of the Ce3+ valence state in cerium oxide nanoparticle layers.
    Naganuma T; Traversa E
    Nanoscale; 2012 Aug; 4(16):4950-3. PubMed ID: 22791232
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoceria distribution and effects are mouse-strain dependent.
    Yokel RA; Tseng MT; Butterfield DA; Hancock ML; Grulke EA; Unrine JM; Stromberg AJ; Dozier AK; Graham UM
    Nanotoxicology; 2020 Aug; 14(6):827-846. PubMed ID: 32552239
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of DNA on the oxidase activity of nanoceria with different morphologies.
    Yang D; Fa M; Gao L; Zhao R; Luo Y; Yao X
    Nanotechnology; 2018 Sep; 29(38):385101. PubMed ID: 29949520
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of the Synthesis Scheme of Nanocrystalline Cerium Oxide and Its Concentration on the Biological Activity of Cells Providing Wound Regeneration.
    Silina EV; Stupin VA; Manturova NE; Ivanova OS; Popov AL; Mysina EA; Artyushkova EB; Kryukov AA; Dodonova SA; Kruglova MP; Tinkov AA; Skalny AV; Ivanov VK
    Int J Mol Sci; 2023 Sep; 24(19):. PubMed ID: 37833949
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo toxicological evaluation of polymer brush engineered nanoceria: impact of brush charge.
    Catalán J; Fascineli ML; Politakos N; Hartikainen M; Garcia MP; Cáceres-Vélez PR; Moreno C; Silva SWD; Morais PC; Norppa H; Moya SE; Azevedo RB
    Nanotoxicology; 2019 Apr; 13(3):305-325. PubMed ID: 30582398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catalytic Properties and Biomedical Applications of Cerium Oxide Nanoparticles.
    Walkey C; Das S; Seal S; Erlichman J; Heckman K; Ghibelli L; Traversa E; McGinnis JF; Self WT
    Environ Sci Nano; 2015 Feb; 2(1):33-53. PubMed ID: 26207185
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Uptake, translocation and impact of green synthesized nanoceria on growth and antioxidant enzymes activity of Solanum lycopersicum L.
    Singh A; Hussain I; Singh NB; Singh H
    Ecotoxicol Environ Saf; 2019 Oct; 182():109410. PubMed ID: 31284122
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of cerium redox state in the SOD mimetic activity of nanoceria.
    Heckert EG; Karakoti AS; Seal S; Self WT
    Biomaterials; 2008 Jun; 29(18):2705-9. PubMed ID: 18395249
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoceria particles as catalytic amplifiers for alkaline phosphatase assays.
    Hayat A; Andreescu S
    Anal Chem; 2013 Nov; 85(21):10028-32. PubMed ID: 24053108
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oscillations of Cerium Oxidation State Driven by Oxygen Diffusion in Colloidal Nanoceria (CeO
    Malyukin Y; Klochkov V; Maksimchuk P; Seminko V; Spivak N
    Nanoscale Res Lett; 2017 Oct; 12(1):566. PubMed ID: 29030776
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Untangling the biological effects of cerium oxide nanoparticles: the role of surface valence states.
    Pulido-Reyes G; Rodea-Palomares I; Das S; Sakthivel TS; Leganes F; Rosal R; Seal S; Fernández-Piñas F
    Sci Rep; 2015 Oct; 5():15613. PubMed ID: 26489858
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.