These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 34136391)

  • 1. MV CBCT-Based Synthetic CT Generation Using a Deep Learning Method for Rectal Cancer Adaptive Radiotherapy.
    Zhao J; Chen Z; Wang J; Xia F; Peng J; Hu Y; Hu W; Zhang Z
    Front Oncol; 2021; 11():655325. PubMed ID: 34136391
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Streaking artifact reduction for CBCT-based synthetic CT generation in adaptive radiotherapy.
    Gao L; Xie K; Sun J; Lin T; Sui J; Yang G; Ni X
    Med Phys; 2023 Feb; 50(2):879-893. PubMed ID: 36183234
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generating synthetic CT from low-dose cone-beam CT by using generative adversarial networks for adaptive radiotherapy.
    Gao L; Xie K; Wu X; Lu Z; Li C; Sun J; Lin T; Sui J; Ni X
    Radiat Oncol; 2021 Oct; 16(1):202. PubMed ID: 34649572
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generating synthesized computed tomography (CT) from cone-beam computed tomography (CBCT) using CycleGAN for adaptive radiation therapy.
    Liang X; Chen L; Nguyen D; Zhou Z; Gu X; Yang M; Wang J; Jiang S
    Phys Med Biol; 2019 Jun; 64(12):125002. PubMed ID: 31108465
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CBCT-based synthetic CT generation using generative adversarial networks with disentangled representation.
    Liu J; Yan H; Cheng H; Liu J; Sun P; Wang B; Mao R; Du C; Luo S
    Quant Imaging Med Surg; 2021 Dec; 11(12):4820-4834. PubMed ID: 34888192
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CBCT-based synthetic CT generation using deep-attention cycleGAN for pancreatic adaptive radiotherapy.
    Liu Y; Lei Y; Wang T; Fu Y; Tang X; Curran WJ; Liu T; Patel P; Yang X
    Med Phys; 2020 Jun; 47(6):2472-2483. PubMed ID: 32141618
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Compensation cycle consistent generative adversarial networks (Comp-GAN) for synthetic CT generation from MR scans with truncated anatomy.
    Zhao Y; Wang H; Yu C; Court LE; Wang X; Wang Q; Pan T; Ding Y; Phan J; Yang J
    Med Phys; 2023 Jul; 50(7):4399-4414. PubMed ID: 36698291
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving CBCT image quality to the CT level using RegGAN in esophageal cancer adaptive radiotherapy.
    Wang H; Liu X; Kong L; Huang Y; Chen H; Ma X; Duan Y; Shao Y; Feng A; Shen Z; Gu H; Kong Q; Xu Z; Zhou Y
    Strahlenther Onkol; 2023 May; 199(5):485-497. PubMed ID: 36688953
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A more effective CT synthesizer using transformers for cone-beam CT-guided adaptive radiotherapy.
    Chen X; Liu Y; Yang B; Zhu J; Yuan S; Xie X; Liu Y; Dai J; Men K
    Front Oncol; 2022; 12():988800. PubMed ID: 36091131
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CBCT-based synthetic CT generated using CycleGAN with HU correction for adaptive radiotherapy of nasopharyngeal carcinoma.
    Jihong C; Kerun Q; Kaiqiang C; Xiuchun Z; Yimin Z; Penggang B
    Sci Rep; 2023 Apr; 13(1):6624. PubMed ID: 37095147
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CBCT-Based synthetic CT image generation using conditional denoising diffusion probabilistic model.
    Peng J; Qiu RLJ; Wynne JF; Chang CW; Pan S; Wang T; Roper J; Liu T; Patel PR; Yu DS; Yang X
    Med Phys; 2024 Mar; 51(3):1847-1859. PubMed ID: 37646491
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving CBCT quality to CT level using deep learning with generative adversarial network.
    Zhang Y; Yue N; Su MY; Liu B; Ding Y; Zhou Y; Wang H; Kuang Y; Nie K
    Med Phys; 2021 Jun; 48(6):2816-2826. PubMed ID: 33259647
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cone Beam CT (CBCT) Based Synthetic CT Generation Using Deep Learning Methods for Dose Calculation of Nasopharyngeal Carcinoma Radiotherapy.
    Xue X; Ding Y; Shi J; Hao X; Li X; Li D; Wu Y; An H; Jiang M; Wei W; Wang X
    Technol Cancer Res Treat; 2021; 20():15330338211062415. PubMed ID: 34851204
    [No Abstract]   [Full Text] [Related]  

  • 14. Geometric and Dosimetric Evaluation of Deep Learning-Based Automatic Delineation on CBCT-Synthesized CT and Planning CT for Breast Cancer Adaptive Radiotherapy: A Multi-Institutional Study.
    Dai Z; Zhang Y; Zhu L; Tan J; Yang G; Zhang B; Cai C; Jin H; Meng H; Tan X; Jian W; Yang W; Wang X
    Front Oncol; 2021; 11():725507. PubMed ID: 34858813
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A joint learning framework for multisite CBCT-to-CT translation using a hybrid CNN-transformer synthesizer and a registration network.
    Hu Y; Cheng M; Wei H; Liang Z
    Front Oncol; 2024; 14():1440944. PubMed ID: 39175474
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transformer CycleGAN with uncertainty estimation for CBCT based synthetic CT in adaptive radiotherapy.
    Rusanov B; Hassan GM; Reynolds M; Sabet M; Rowshanfarzad P; Bucknell N; Gill S; Dass J; Ebert M
    Phys Med Biol; 2024 Jan; 69(3):. PubMed ID: 38198726
    [No Abstract]   [Full Text] [Related]  

  • 17. Synthetic CT generation from CBCT images via unsupervised deep learning.
    Chen L; Liang X; Shen C; Nguyen D; Jiang S; Wang J
    Phys Med Biol; 2021 May; 66(11):. PubMed ID: 34061043
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison and evaluation of different deep learning models of synthetic CT generation from CBCT for nasopharynx cancer adaptive proton therapy.
    Pang B; Si H; Liu M; Fu W; Zeng Y; Liu H; Cao T; Chang Y; Quan H; Yang Z
    Med Phys; 2023 Nov; 50(11):6920-6930. PubMed ID: 37800874
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anatomical evaluation of deep-learning synthetic computed tomography images generated from male pelvis cone-beam computed tomography.
    de Hond YJM; Kerckhaert CEM; van Eijnatten MAJM; van Haaren PMA; Hurkmans CW; Tijssen RHN
    Phys Imaging Radiat Oncol; 2023 Jan; 25():100416. PubMed ID: 36969503
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A cycle generative adversarial network for improving the quality of four-dimensional cone-beam computed tomography images.
    Usui K; Ogawa K; Goto M; Sakano Y; Kyougoku S; Daida H
    Radiat Oncol; 2022 Apr; 17(1):69. PubMed ID: 35392947
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.