These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 34136760)

  • 1. Low Molecular Weight Supramolecular Hydrogels for Sustained and Localized
    Raymond DM; Abraham BL; Fujita T; Watrous MJ; Toriki ES; Takano T; Nilsson BL
    ACS Appl Bio Mater; 2019 Apr; 2(5):2116-2124. PubMed ID: 34136760
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Supramolecular Phenylalanine-Derived Hydrogels for the Sustained Release of Functional Proteins.
    Jagrosse ML; Agredo P; Abraham BL; Toriki ES; Nilsson BL
    ACS Biomater Sci Eng; 2023 Feb; 9(2):784-796. PubMed ID: 36693219
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anion Effects on the Supramolecular Self-Assembly of Cationic Phenylalanine Derivatives.
    Abraham BL; Agredo P; Mensah SG; Nilsson BL
    Langmuir; 2022 Dec; 38(50):15494-15505. PubMed ID: 36473193
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrostatic interactions regulate the release of small molecules from supramolecular hydrogels.
    Abraham BL; Toriki ES; Tucker NJ; Nilsson BL
    J Mater Chem B; 2020 Aug; 8(30):6366-6377. PubMed ID: 32596699
    [TBL] [Abstract][Full Text] [Related]  

  • 5. N-(9-Fluorenylmethoxycarbonyl)-L-Phenylalanine/nano-hydroxyapatite hybrid supramolecular hydrogels as drug delivery vehicles with antibacterial property and cytocompatibility.
    Li W; Hu X; Chen J; Wei Z; Song C; Huang R
    J Mater Sci Mater Med; 2020 Jul; 31(8):73. PubMed ID: 32729101
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strategy to Identify Improved N-Terminal Modifications for Supramolecular Phenylalanine-Derived Hydrogelators.
    Abraham BL; Liyanage W; Nilsson BL
    Langmuir; 2019 Nov; 35(46):14939-14948. PubMed ID: 31664849
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Side-chain halogen effects on self-assembly and hydrogelation of cationic phenylalanine derivatives.
    Abraham BL; Mensah SG; Gwinnell BR; Nilsson BL
    Soft Matter; 2022 Aug; 18(32):5999-6008. PubMed ID: 35920399
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of gelation method on thixotropic properties of phenylalanine-derived supramolecular hydrogels.
    Quigley E; Johnson J; Liyanage W; Nilsson BL
    Soft Matter; 2020 Nov; 16(44):10158-10168. PubMed ID: 33035281
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of C-terminal modification on the self-assembly and hydrogelation of fluorinated Fmoc-Phe derivatives.
    Ryan DM; Doran TM; Anderson SB; Nilsson BL
    Langmuir; 2011 Apr; 27(7):4029-39. PubMed ID: 21401045
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-proteinogenic amino acid based supramolecular hydrogel material for enhanced cell proliferation.
    Arokianathan JF; Ramya KA; Janeena A; Deshpande AP; Ayyadurai N; Leemarose A; Shanmugam G
    Colloids Surf B Biointerfaces; 2020 Jan; 185():110581. PubMed ID: 31677412
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Injectable Tripeptide/Polymer Nanoparticles Supramolecular Hydrogel: A Candidate for the Treatment of Inflammatory Pathologies.
    Criado-Gonzalez M; Espinosa-Cano E; Rojo L; Boulmedais F; Aguilar MR; Hernández R
    ACS Appl Mater Interfaces; 2022 Mar; 14(8):10068-10080. PubMed ID: 35179869
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-Assembly, Hydrogelation, and Nanotube Formation by Cation-Modified Phenylalanine Derivatives.
    Rajbhandary A; Raymond DM; Nilsson BL
    Langmuir; 2017 Jun; 33(23):5803-5813. PubMed ID: 28514156
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploiting Minimalistic Backbone Engineered γ-Phenylalanine for the Formation of Supramolecular Co-Polymer.
    Misra R; Tang Y; Chen Y; Chakraborty P; Netti F; Vijayakanth T; Shimon LJW; Wei G; Adler-Abramovich L
    Macromol Rapid Commun; 2022 Oct; 43(19):e2200223. PubMed ID: 35920234
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reinforced Supramolecular Hydrogels from Attapulgite and Cyclodextrin Pseudopolyrotaxane for Sustained Intra-Articular Drug Delivery.
    Ha W; Wang ZH; Zhao XB; Shi YP
    Macromol Biosci; 2021 Jan; 21(1):e2000299. PubMed ID: 33043625
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An injectable thermosensitive photothermal-network hydrogel for near-infrared-triggered drug delivery and synergistic photothermal-chemotherapy.
    Liu C; Guo X; Ruan C; Hu H; Jiang BP; Liang H; Shen XC
    Acta Biomater; 2019 Sep; 96():281-294. PubMed ID: 31319202
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antitumor Photodynamic Therapy Based on Dipeptide Fibrous Hydrogels with Incorporation of Photosensitive Drugs.
    Abbas M; Xing R; Zhang N; Zou Q; Yan X
    ACS Biomater Sci Eng; 2018 Jun; 4(6):2046-2052. PubMed ID: 33445275
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cationic self-assembled peptide-based molecular hydrogels for extended ocular drug delivery.
    Liu H; Bi X; Wu Y; Pan M; Ma X; Mo L; Wang J; Li X
    Acta Biomater; 2021 Sep; 131():162-171. PubMed ID: 34157453
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transforming sustained release into on-demand release: self-healing guanosine-borate supramolecular hydrogels with multiple responsiveness for Acyclovir delivery.
    Wu CG; Wang X; Shi YF; Wang BC; Xue W; Zhang Y
    Biomater Sci; 2020 Nov; 8(22):6190-6203. PubMed ID: 32966367
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of a Micellar Supramolecular Hydrogel for Ocular Drug Delivery.
    Zhang Z; He Z; Liang R; Ma Y; Huang W; Jiang R; Shi S; Chen H; Li X
    Biomacromolecules; 2016 Mar; 17(3):798-807. PubMed ID: 26830342
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biocompatibility and drug release behavior of spontaneously formed phospholipid polymer hydrogels.
    Kimura M; Takai M; Ishihara K
    J Biomed Mater Res A; 2007 Jan; 80(1):45-54. PubMed ID: 16958047
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.