These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 34136817)

  • 1. Three-dimensional U-Net Convolutional Neural Network for Detection and Segmentation of Intracranial Metastases.
    Rudie JD; Weiss DA; Colby JB; Rauschecker AM; Laguna B; Braunstein S; Sugrue LP; Hess CP; Villanueva-Meyer JE
    Radiol Artif Intell; 2021 May; 3(3):e200204. PubMed ID: 34136817
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automated Detection of Brain Metastases on T1-Weighted MRI Using a Convolutional Neural Network: Impact of Volume Aware Loss and Sampling Strategy.
    Chartrand G; Emiliani RD; Pawlowski SA; Markel DA; Bahig H; Cengarle-Samak A; Rajakesari S; Lavoie J; Ducharme S; Roberge D
    J Magn Reson Imaging; 2022 Dec; 56(6):1885-1898. PubMed ID: 35624544
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MetNet: Computer-aided segmentation of brain metastases in post-contrast T1-weighted magnetic resonance imaging.
    Zhou Z; Sanders JW; Johnson JM; Gule-Monroe M; Chen M; Briere TM; Wang Y; Son JB; Pagel MD; Ma J; Li J
    Radiother Oncol; 2020 Dec; 153():189-196. PubMed ID: 32937104
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep learning-based automated segmentation of resection cavities on postsurgical epilepsy MRI.
    Arnold TC; Muthukrishnan R; Pattnaik AR; Sinha N; Gibson A; Gonzalez H; Das SR; Litt B; Englot DJ; Morgan VL; Davis KA; Stein JM
    Neuroimage Clin; 2022; 36():103154. PubMed ID: 35988342
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Longitudinal Assessment of Posttreatment Diffuse Glioma Tissue Volumes with Three-dimensional Convolutional Neural Networks.
    Rudie JD; Calabrese E; Saluja R; Weiss D; Colby JB; Cha S; Hess CP; Rauschecker AM; Sugrue LP; Villanueva-Meyer JE
    Radiol Artif Intell; 2022 Sep; 4(5):e210243. PubMed ID: 36204543
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An investigation of the effect of fat suppression and dimensionality on the accuracy of breast MRI segmentation using U-nets.
    Fashandi H; Kuling G; Lu Y; Wu H; Martel AL
    Med Phys; 2019 Mar; 46(3):1230-1244. PubMed ID: 30609062
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automatic segmentation of brain metastases using T1 magnetic resonance and computed tomography images.
    Hsu DG; Ballangrud Å; Shamseddine A; Deasy JO; Veeraraghavan H; Cervino L; Beal K; Aristophanous M
    Phys Med Biol; 2021 Aug; 66(17):. PubMed ID: 34315148
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automatic segmentation of prostate cancer metastases in PSMA PET/CT images using deep neural networks with weighted batch-wise dice loss.
    Xu Y; Klyuzhin I; Harsini S; Ortiz A; Zhang S; Bénard F; Dodhia R; Uribe CF; Rahmim A; Lavista Ferres J
    Comput Biol Med; 2023 May; 158():106882. PubMed ID: 37037147
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-Disease Segmentation of Gliomas and White Matter Hyperintensities in the BraTS Data Using a 3D Convolutional Neural Network.
    Rudie JD; Weiss DA; Saluja R; Rauschecker AM; Wang J; Sugrue L; Bakas S; Colby JB
    Front Comput Neurosci; 2019; 13():84. PubMed ID: 31920609
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development and external validation of an MRI-based neural network for brain metastasis segmentation in the AURORA multicenter study.
    Buchner JA; Kofler F; Etzel L; Mayinger M; Christ SM; Brunner TB; Wittig A; Menze B; Zimmer C; Meyer B; Guckenberger M; Andratschke N; El Shafie RA; Debus J; Rogers S; Riesterer O; Schulze K; Feldmann HJ; Blanck O; Zamboglou C; Ferentinos K; Wolff R; Eitz KA; Combs SE; Bernhardt D; Wiestler B; Peeken JC
    Radiother Oncol; 2023 Jan; 178():109425. PubMed ID: 36442609
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MRI-based two-stage deep learning model for automatic detection and segmentation of brain metastases.
    Li R; Guo Y; Zhao Z; Chen M; Liu X; Gong G; Wang L
    Eur Radiol; 2023 May; 33(5):3521-3531. PubMed ID: 36695903
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep convolutional neural networks for automated segmentation of brain metastases trained on clinical data.
    Bousabarah K; Ruge M; Brand JS; Hoevels M; Rueß D; Borggrefe J; Große Hokamp N; Visser-Vandewalle V; Maintz D; Treuer H; Kocher M
    Radiat Oncol; 2020 Apr; 15(1):87. PubMed ID: 32312276
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computer-aided Detection of Brain Metastases in T1-weighted MRI for Stereotactic Radiosurgery Using Deep Learning Single-Shot Detectors.
    Zhou Z; Sanders JW; Johnson JM; Gule-Monroe MK; Chen MM; Briere TM; Wang Y; Son JB; Pagel MD; Li J; Ma J
    Radiology; 2020 May; 295(2):407-415. PubMed ID: 32181729
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MRI-based Identification and Classification of Major Intracranial Tumor Types by Using a 3D Convolutional Neural Network: A Retrospective Multi-institutional Analysis.
    Chakrabarty S; Sotiras A; Milchenko M; LaMontagne P; Hileman M; Marcus D
    Radiol Artif Intell; 2021 Sep; 3(5):e200301. PubMed ID: 34617029
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extended nnU-Net for Brain Metastasis Detection and Segmentation in Contrast-Enhanced Magnetic Resonance Imaging With a Large Multi-Institutional Data Set.
    Yoo Y; Gibson E; Zhao G; Re TJ; Parmar H; Das J; Wang H; Kim MM; Shen C; Lee Y; Kondziolka D; Ibrahim M; Lian J; Jain R; Zhu T; Comaniciu D; Balter JM; Cao Y
    Int J Radiat Oncol Biol Phys; 2025 Jan; 121(1):241-249. PubMed ID: 39059508
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Segmentation of the Prostate Transition Zone and Peripheral Zone on MR Images with Deep Learning.
    Bardis M; Houshyar R; Chantaduly C; Tran-Harding K; Ushinsky A; Chahine C; Rupasinghe M; Chow D; Chang P
    Radiol Imaging Cancer; 2021 May; 3(3):e200024. PubMed ID: 33929265
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Radiologist-Level Performance by Using Deep Learning for Segmentation of Breast Cancers on MRI Scans.
    Hirsch L; Huang Y; Luo S; Rossi Saccarelli C; Lo Gullo R; Daimiel Naranjo I; Bitencourt AGV; Onishi N; Ko ES; Leithner D; Avendano D; Eskreis-Winkler S; Hughes M; Martinez DF; Pinker K; Juluru K; El-Rowmeim AE; Elnajjar P; Morris EA; Makse HA; Parra LC; Sutton EJ
    Radiol Artif Intell; 2022 Jan; 4(1):e200231. PubMed ID: 35146431
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fully Automated Convolutional Neural Network Method for Quantification of Breast MRI Fibroglandular Tissue and Background Parenchymal Enhancement.
    Ha R; Chang P; Mema E; Mutasa S; Karcich J; Wynn RT; Liu MZ; Jambawalikar S
    J Digit Imaging; 2019 Feb; 32(1):141-147. PubMed ID: 30076489
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fully Automated MR Detection and Segmentation of Brain Metastases in Non-small Cell Lung Cancer Using Deep Learning.
    Jünger ST; Hoyer UCI; Schaufler D; Laukamp KR; Goertz L; Thiele F; Grunz JP; Schlamann M; Perkuhn M; Kabbasch C; Persigehl T; Grau S; Borggrefe J; Scheffler M; Shahzad R; Pennig L
    J Magn Reson Imaging; 2021 Nov; 54(5):1608-1622. PubMed ID: 34032344
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep learning-based detection and segmentation-assisted management of brain metastases.
    Xue J; Wang B; Ming Y; Liu X; Jiang Z; Wang C; Liu X; Chen L; Qu J; Xu S; Tang X; Mao Y; Liu Y; Li D
    Neuro Oncol; 2020 Apr; 22(4):505-514. PubMed ID: 31867599
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.