These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 34136955)
1. Green Roccella phycopsis Ach. mediated silver nanoparticles: synthesis, characterization, phenolic content, antioxidant, antibacterial and anti-acetylcholinesterase capacities. Ben Salah M; Aouadhi C; Khadhri A Bioprocess Biosyst Eng; 2021 Nov; 44(11):2257-2268. PubMed ID: 34136955 [TBL] [Abstract][Full Text] [Related]
2. Phenolic Content, Antioxidant, Antibacterial, and Anti-Acetylcholinesterase Activities of Biosynthesized and Characterized Silver Nanoparticles from Tunisian Medicinal Lichen Species. Salah MB; Aouadhi C; Mendili M; Khadhri A Int J Med Mushrooms; 2022; 24(6):79-93. PubMed ID: 35695640 [TBL] [Abstract][Full Text] [Related]
3. Ameliorated Antibacterial and Antioxidant Properties by Konappa N; Udayashankar AC; Dhamodaran N; Krishnamurthy S; Jagannath S; Uzma F; Pradeep CK; De Britto S; Chowdappa S; Jogaiah S Biomolecules; 2021 Apr; 11(4):. PubMed ID: 33916555 [TBL] [Abstract][Full Text] [Related]
4. Phyto-mediated biosynthesis of silver nanoparticles using the rind extract of watermelon (Citrullus lanatus) under photo-catalyzed condition and investigation of its antibacterial, anticandidal and antioxidant efficacy. Patra JK; Das G; Baek KH J Photochem Photobiol B; 2016 Aug; 161():200-10. PubMed ID: 27261701 [TBL] [Abstract][Full Text] [Related]
5. Tannic acid-mediated green synthesis of antibacterial silver nanoparticles. Kim TY; Cha SH; Cho S; Park Y Arch Pharm Res; 2016 Apr; 39(4):465-473. PubMed ID: 26895244 [TBL] [Abstract][Full Text] [Related]
6. Silver nanoparticles synthesis using Wedelia urticifolia (Blume) DC. flower extract: Characterization and antibacterial activity evaluation. Rather MY; Shincy M; Sundarapandian S Microsc Res Tech; 2020 Sep; 83(9):1085-1094. PubMed ID: 32306505 [TBL] [Abstract][Full Text] [Related]
7. Biomedical Potentialities of Taraxacum officinale-based Nanoparticles Biosynthesized Using Methanolic Leaf Extract. Rasheed T; Bilal M; Li C; Iqbal HMN Curr Pharm Biotechnol; 2017; 18(14):1116-1123. PubMed ID: 29446732 [TBL] [Abstract][Full Text] [Related]
8. Phytosynthesis of silver nanoparticles using Artemisia marschalliana Sprengel aerial part extract and assessment of their antioxidant, anticancer, and antibacterial properties. Salehi S; Shandiz SA; Ghanbar F; Darvish MR; Ardestani MS; Mirzaie A; Jafari M Int J Nanomedicine; 2016; 11():1835-46. PubMed ID: 27199558 [TBL] [Abstract][Full Text] [Related]
9. Green synthesis of silver nanoparticles using Nelumbo nucifera seed extract and its antibacterial activity. Tho NT; An TN; Tri MD; Sreekanth TV; Lee JS; Nagajyothi PC; Lee KD Acta Chim Slov; 2013; 60(3):673-8. PubMed ID: 24169723 [TBL] [Abstract][Full Text] [Related]
10. Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Fayaz AM; Balaji K; Girilal M; Yadav R; Kalaichelvan PT; Venketesan R Nanomedicine; 2010 Feb; 6(1):103-9. PubMed ID: 19447203 [TBL] [Abstract][Full Text] [Related]
11. Tuber extract of Arisaema flavum eco-benignly and effectively synthesize silver nanoparticles: Photocatalytic and antibacterial response against multidrug resistant engineered E. coli QH4. Rahman AU; Khan AU; Yuan Q; Wei Y; Ahmad A; Ullah S; Khan ZUH; Shams S; Tariq M; Ahmad W J Photochem Photobiol B; 2019 Apr; 193():31-38. PubMed ID: 30802773 [TBL] [Abstract][Full Text] [Related]
12. Antibacterial potential of silver nanoparticles synthesized using Madhuca longifolia flower extract as a green resource. Patil MP; Singh RD; Koli PB; Patil KT; Jagdale BS; Tipare AR; Kim GD Microb Pathog; 2018 Aug; 121():184-189. PubMed ID: 29807133 [TBL] [Abstract][Full Text] [Related]
13. Biosynthesis of silver nanoparticles using leaf extract of Aesculus hippocastanum (horse chestnut): Evaluation of their antibacterial, antioxidant and drug release system activities. Küp FÖ; Çoşkunçay S; Duman F Mater Sci Eng C Mater Biol Appl; 2020 Feb; 107():110207. PubMed ID: 31761206 [TBL] [Abstract][Full Text] [Related]
14. Optimization of Silver Nanoparticle Synthesis by Banana Peel Extract Using Statistical Experimental Design, and Testing of their Antibacterial and Antioxidant Properties. Rigopoulos N; Thomou E; Kouloumpis Α; Lamprou ER; Petropoulea V; Gournis D; Poulios E; Karantonis HC; Giaouris E Curr Pharm Biotechnol; 2019; 20(10):858-873. PubMed ID: 30526454 [TBL] [Abstract][Full Text] [Related]
15. Ultrasound Assisted Green Synthesis of Silver and Iron Oxide Nanoparticles Using Fenugreek Seed Extract and Their Enhanced Antibacterial and Antioxidant Activities. Deshmukh AR; Gupta A; Kim BS Biomed Res Int; 2019; 2019():1714358. PubMed ID: 31080808 [TBL] [Abstract][Full Text] [Related]
16. Mechanistic antimicrobial approach of extracellularly synthesized silver nanoparticles against gram positive and gram negative bacteria. Tamboli DP; Lee DS J Hazard Mater; 2013 Sep; 260():878-84. PubMed ID: 23867968 [TBL] [Abstract][Full Text] [Related]
17. Photo-catalytic, anti-bacterial, and anti-cancer properties of phyto-mediated synthesis of silver nanoparticles from Artemisia tournefortiana Rchb extract. Baghbani-Arani F; Movagharnia R; Sharifian A; Salehi S; Shandiz SAS J Photochem Photobiol B; 2017 Aug; 173():640-649. PubMed ID: 28711019 [TBL] [Abstract][Full Text] [Related]
18. Green Synthesis of Gold and Silver Nanoparticles by Using Nayem SMA; Sultana N; Haque MA; Miah B; Hasan MM; Islam T; Hasan MM; Awal A; Uddin J; Aziz MA; Ahammad AJS Molecules; 2020 Oct; 25(20):. PubMed ID: 33080946 [TBL] [Abstract][Full Text] [Related]
19. Green Synthesis, Characterization, Antioxidant, Antibacterial and Enzyme Inhibition Effects of Chestnut ( Keskin M; Kaya G; Bayram S; Kurek-Górecka A; Olczyk P Molecules; 2023 Mar; 28(6):. PubMed ID: 36985734 [TBL] [Abstract][Full Text] [Related]
20. Garcinia indica mediated biogenic synthesis of silver nanoparticles with antibacterial and antioxidant activities. Sangaonkar GM; Pawar KD Colloids Surf B Biointerfaces; 2018 Apr; 164():210-217. PubMed ID: 29413598 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]