These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 34137113)
41. Intra- and interscanner variability of magnetic resonance imaging based volumetry in multiple sclerosis. Biberacher V; Schmidt P; Keshavan A; Boucard CC; Righart R; Sämann P; Preibisch C; Fröbel D; Aly L; Hemmer B; Zimmer C; Henry RG; Mühlau M Neuroimage; 2016 Nov; 142():188-197. PubMed ID: 27431758 [TBL] [Abstract][Full Text] [Related]
42. Global and Regional Deep Learning Models for Multiple Sclerosis Stratification From MRI. Coll L; Pareto D; Carbonell-Mirabent P; Cobo-Calvo Á; Arrambide G; Vidal-Jordana Á; Comabella M; Castilló J; Rodrı Guez-Acevedo B; Zabalza A; Galán I; Midaglia L; Nos C; Auger C; Alberich M; Río J; Sastre-Garriga J; Oliver A; Montalban X; Rovira À; Tintoré M; Lladó X; Tur C J Magn Reson Imaging; 2024 Jul; 60(1):258-267. PubMed ID: 37803817 [TBL] [Abstract][Full Text] [Related]
43. Convolutional neural networks for skull-stripping in brain MR imaging using silver standard masks. Lucena O; Souza R; Rittner L; Frayne R; Lotufo R Artif Intell Med; 2019 Jul; 98():48-58. PubMed ID: 31521252 [TBL] [Abstract][Full Text] [Related]
44. Unexpectedly Smaller Artifacts of 3.0-T Magnetic Resonance Imaging than 1.5 T: Recommendation of 3.0-T Scanners for Patients with Magnet-Resistant Adjustable Ventriculoperitoneal Shunt Devices. Amano Y; Kuroda N; Uchida D; Sakakura Y; Nakatogawa H; Ando N; Nakayama T; Sato H; Masui T; Sameshima T; Tanaka T World Neurosurg; 2019 Oct; 130():e393-e399. PubMed ID: 31260847 [TBL] [Abstract][Full Text] [Related]
45. Assessment of the increase in variability when combining volumetric data from different scanners. Reig S; Sánchez-González J; Arango C; Castro J; González-Pinto A; Ortuño F; Crespo-Facorro B; Bargalló N; Desco M Hum Brain Mapp; 2009 Feb; 30(2):355-68. PubMed ID: 18064586 [TBL] [Abstract][Full Text] [Related]
46. Inter- and Intra-Scanner Variability of Automated Brain Volumetry on Three Magnetic Resonance Imaging Systems in Alzheimer's Disease and Controls. Wittens MMJ; Allemeersch GJ; Sima DM; Naeyaert M; Vanderhasselt T; Vanbinst AM; Buls N; De Brucker Y; Raeymaekers H; Fransen E; Smeets D; van Hecke W; Nagels G; Bjerke M; de Mey J; Engelborghs S Front Aging Neurosci; 2021; 13():746982. PubMed ID: 34690745 [TBL] [Abstract][Full Text] [Related]
47. Physics-Informed Discretization for Reproducible and Robust Radiomic Feature Extraction Using Quantitative MRI. Zhao W; Hu Z; Kazerooni AF; Körzdörfer G; Nittka M; Davatzikos C; Viswanath SE; Wang X; Badve C; Ma D Invest Radiol; 2024 May; 59(5):359-371. PubMed ID: 37812483 [TBL] [Abstract][Full Text] [Related]
48. Evaluation of Intra- and Interscanner Reliability of MRI Protocols for Spinal Cord Gray Matter and Total Cross-Sectional Area Measurements. Papinutto N; Henry RG J Magn Reson Imaging; 2019 Apr; 49(4):1078-1090. PubMed ID: 30198209 [TBL] [Abstract][Full Text] [Related]
49. Effects of changing from non-accelerated to accelerated MRI for follow-up in brain atrophy measurement. Leung KK; Malone IM; Ourselin S; Gunter JL; Bernstein MA; Thompson PM; Jack CR; Weiner MW; Fox NC; Neuroimage; 2015 Feb; 107():46-53. PubMed ID: 25481794 [TBL] [Abstract][Full Text] [Related]
50. A generalizable brain extraction net (BEN) for multimodal MRI data from rodents, nonhuman primates, and humans. Yu Z; Han X; Xu W; Zhang J; Marr C; Shen D; Peng T; Zhang XY; Feng J Elife; 2022 Dec; 11():. PubMed ID: 36546674 [TBL] [Abstract][Full Text] [Related]
51. Multicenter reproducibility of quantitative susceptibility mapping in a gadolinium phantom using MEDI+0 automatic zero referencing. Deh K; Kawaji K; Bulk M; Van Der Weerd L; Lind E; Spincemaille P; McCabe Gillen K; Van Auderkerke J; Wang Y; Nguyen TD Magn Reson Med; 2019 Feb; 81(2):1229-1236. PubMed ID: 30284727 [TBL] [Abstract][Full Text] [Related]
52. Harmonizing T1-Weighted Images to Improve Consistency of Brain Morphology Among Different Scanner Manufacturers in Alzheimer's disease. Zhao S; Zhang T; Zhang W; Pan T; Zhang G; Feng S; Zhang X; Nie B; Liu H; Shan B; J Magn Reson Imaging; 2024 Apr; 59(4):1327-1340. PubMed ID: 37403942 [TBL] [Abstract][Full Text] [Related]
53. MRI Deep Learning-Based Automatic Segmentation of Interventricular Septum for Black-Blood Myocardial T2* Measurement in Thalassemia. Lian Z; Lu Q; Lin B; Chen L; Peng P; Feng Y J Magn Reson Imaging; 2024 Aug; 60(2):651-661. PubMed ID: 37941460 [TBL] [Abstract][Full Text] [Related]
54. Fully Automated MRI Segmentation and Volumetric Measurement of Intracranial Meningioma Using Deep Learning. Kang H; Witanto JN; Pratama K; Lee D; Choi KS; Choi SH; Kim KM; Kim MS; Kim JW; Kim YH; Park SJ; Park CK J Magn Reson Imaging; 2023 Mar; 57(3):871-881. PubMed ID: 35775971 [TBL] [Abstract][Full Text] [Related]
55. Automatic segmentation of the thalamus using a massively trained 3D convolutional neural network: higher sensitivity for the detection of reduced thalamus volume by improved inter-scanner stability. Opfer R; Krüger J; Spies L; Ostwaldt AC; Kitzler HH; Schippling S; Buchert R Eur Radiol; 2023 Mar; 33(3):1852-1861. PubMed ID: 36264314 [TBL] [Abstract][Full Text] [Related]
56. 3D Breast Cancer Segmentation in DCE-MRI Using Deep Learning With Weak Annotation. Park GE; Kim SH; Nam Y; Kang J; Park M; Kang BJ J Magn Reson Imaging; 2024 Jun; 59(6):2252-2262. PubMed ID: 37596823 [TBL] [Abstract][Full Text] [Related]
57. Scanner-Independent MyoMapNet for Accelerated Cardiac MRI T Amyar A; Fahmy AS; Guo R; Nakata K; Sai E; Rodriguez J; Cirillo J; Pareek K; Kim J; Judd RM; Ruberg FL; Weinsaft JW; Nezafat R J Magn Reson Imaging; 2024 Jan; 59(1):179-189. PubMed ID: 37052580 [TBL] [Abstract][Full Text] [Related]
58. Bias, Repeatability and Reproducibility of Liver T Tadimalla S; Wilson DJ; Shelley D; Bainbridge G; Saysell M; Mendichovszky IA; Graves MJ; Guthrie JA; Waterton JC; Parker GJM; Sourbron SP J Magn Reson Imaging; 2022 Oct; 56(4):1042-1052. PubMed ID: 35224803 [TBL] [Abstract][Full Text] [Related]
59. The Impact of Fatty Infiltration on MRI Segmentation of Lower Limb Muscles in Neuromuscular Diseases: A Comparative Study of Deep Learning Approaches. Hostin MA; Ogier AC; Michel CP; Le Fur Y; Guye M; Attarian S; Fortanier E; Bellemare ME; Bendahan D J Magn Reson Imaging; 2023 Dec; 58(6):1826-1835. PubMed ID: 37025028 [TBL] [Abstract][Full Text] [Related]
60. Apparent diffusion coefficient reproducibility of the pancreas measured at different MR scanners using diffusion-weighted imaging. Ye XH; Gao JY; Yang ZH; Liu Y J Magn Reson Imaging; 2014 Dec; 40(6):1375-81. PubMed ID: 24222019 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]