These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 34137154)

  • 1. Water Oxidation under Modal Ultrastrong Coupling Conditions Using Gold/Silver Alloy Nanoparticles and Fabry-Pérot Nanocavities.
    Suganami Y; Oshikiri T; Shi X; Misawa H
    Angew Chem Int Ed Engl; 2021 Aug; 60(34):18438-18442. PubMed ID: 34137154
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced water splitting under modal strong coupling conditions.
    Shi X; Ueno K; Oshikiri T; Sun Q; Sasaki K; Misawa H
    Nat Nanotechnol; 2018 Oct; 13(10):953-958. PubMed ID: 30061658
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Boosting Hydrogen Evolution at Visible Light Wavelengths by Using a Photocathode with Modal Strong Coupling between Plasmons and a Fabry-Pérot Nanocavity.
    Oshikiri T; Jo H; Shi X; Misawa H
    Chemistry; 2022 Apr; 28(24):e202200288. PubMed ID: 35187736
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved water splitting efficiency of Au-NP-loaded Ga
    Wang Y; Shi X; Oshikiri T; Misawa H
    Nanoscale Adv; 2022 Dec; 5(1):119-123. PubMed ID: 36605794
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantum-Coherence-Enhanced Hot-Electron Injection under Modal Strong Coupling.
    Liu YE; Shi X; Yokoyama T; Inoue S; Sunaba Y; Oshikiri T; Sun Q; Tamura M; Ishihara H; Sasaki K; Misawa H
    ACS Nano; 2023 May; 17(9):8315-8323. PubMed ID: 37083316
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatially Uniform and Quantitative Surface-Enhanced Raman Scattering under Modal Ultrastrong Coupling Beyond Nanostructure Homogeneity Limits.
    Suganami Y; Oshikiri T; Mitomo H; Sasaki K; Liu YE; Shi X; Matsuo Y; Ijiro K; Misawa H
    ACS Nano; 2024 Feb; 18(6):4993-5002. PubMed ID: 38299996
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasmon-induced electron injection into the large negative potential conduction band of Ga
    Wang Y; Shi X; Oshikiri T; Zu S; Ueno K; Misawa H
    Nanoscale; 2020 Nov; 12(44):22674-22679. PubMed ID: 33156317
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gap-plasmon based broadband absorbers for enhanced hot-electron and photocurrent generation.
    Lu Y; Dong W; Chen Z; Pors A; Wang Z; Bozhevolnyi SI
    Sci Rep; 2016 Jul; 6():30650. PubMed ID: 27470207
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancing plasmonic hot-carrier generation by strong coupling of multiple resonant modes.
    Wong YL; Jia H; Jian A; Lei D; El Abed AI; Zhang X
    Nanoscale; 2021 Feb; 13(5):2792-2800. PubMed ID: 33491704
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Localized surface plasmon-enhanced photoelectrochemical water oxidation by inorganic/organic nano-heterostructure comprising NDI-based D-A-D type small molecule.
    Sanke DM; Ghosh NG; Das S; Karmakar HS; Sarkar A; Zade SS
    J Colloid Interface Sci; 2021 Nov; 601():803-815. PubMed ID: 34102408
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Harvesting Hot Holes in Plasmon-Coupled Ultrathin Photoanodes for High-Performance Photoelectrochemical Water Splitting.
    Vahidzadeh E; Zeng S; Alam KM; Kumar P; Riddell S; Chaulagain N; Gusarov S; Kobryn AE; Shankar K
    ACS Appl Mater Interfaces; 2021 Sep; 13(36):42741-42752. PubMed ID: 34476945
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasmon Enhanced Internal Photoemission in Antenna-Spacer-Mirror Based Au/TiO₂ Nanostructures.
    Fang Y; Jiao Y; Xiong K; Ogier R; Yang ZJ; Gao S; Dahlin AB; Käll M
    Nano Lett; 2015 Jun; 15(6):4059-65. PubMed ID: 25938263
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Near-field engineering for boosting the photoelectrochemical activity to a modal strong coupling structure.
    Cao Y; Shi X; Oshikiri T; Zu S; Sunaba Y; Sasaki K; Misawa H
    Chem Commun (Camb); 2021 Jan; 57(4):524-527. PubMed ID: 33332498
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasmon-induced enhancement in analytical performance based on gold nanoparticles deposited on TiO2 film.
    Zhu A; Luo Y; Tian Y
    Anal Chem; 2009 Sep; 81(17):7243-7. PubMed ID: 19655788
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gold-silver@TiO
    Lim SP; Lim YS; Pandikumar A; Lim HN; Ng YH; Ramaraj R; Bien DC; Abou-Zied OK; Huang NM
    Phys Chem Chem Phys; 2017 Jan; 19(2):1395-1407. PubMed ID: 27976767
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication and photoelectrochemical properties of ZnS/Au/TiO2 nanotube array films.
    Zhu YF; Zhang J; Xu L; Guo Y; Wang XP; Du RG; Lin CJ
    Phys Chem Chem Phys; 2013 Mar; 15(11):4041-8. PubMed ID: 23400011
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Locally placed nanoscale gold islands film within a TiO
    Kim T; Kumaresan Y; Cho SJ; Lee CL; Lee H; Jung GY
    Nano Converg; 2016; 3(1):33. PubMed ID: 28191443
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving the Water Oxidation Efficiency with a Light-Induced Electric Field in Nanograting Photoanodes.
    Wang W; Guo B; Dai H; Zhao C; Xie G; Ma R; Akram MZ; Shan H; Cai C; Fang Z; Gong JR
    Nano Lett; 2019 Sep; 19(9):6133-6139. PubMed ID: 31430170
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrastrong plasmon-exciton coupling in metal nanoprisms with J-aggregates.
    Balci S
    Opt Lett; 2013 Nov; 38(21):4498-501. PubMed ID: 24177129
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lead-Sulfide-Selenide Quantum Dots and Gold-Copper Alloy Nanoparticles Augment the Light-Harvesting Ability of Solar Cells.
    Das A; Deepa M; Ghosal P
    Chemphyschem; 2017 Apr; 18(7):736-748. PubMed ID: 28070927
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.