These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 34137394)
1. Application of bioorthogonal hetero-Diels-Alder cycloaddition of 5-arylidene derivatives of 1,3-dimethylbarbituric acid and vinyl thioether for imaging inside living cells. Bazan B; Pałasz A; Skalniak Ł; Cież D; Buda S; Jędrzejowska K; Głomb S; Kamzol D; Czarnota K; Latos K; Kozieł K; Musielak B Org Biomol Chem; 2021 Jul; 19(27):6045-6058. PubMed ID: 34137394 [TBL] [Abstract][Full Text] [Related]
2. A bioorthogonal ligation enabled by click cycloaddition of o-quinolinone quinone methide and vinyl thioether. Li Q; Dong T; Liu X; Lei X J Am Chem Soc; 2013 Apr; 135(13):4996-9. PubMed ID: 23521211 [TBL] [Abstract][Full Text] [Related]
3. Advances in Tetrazine Bioorthogonal Chemistry Driven by the Synthesis of Novel Tetrazines and Dienophiles. Wu H; Devaraj NK Acc Chem Res; 2018 May; 51(5):1249-1259. PubMed ID: 29638113 [TBL] [Abstract][Full Text] [Related]
4. Recent Advances in Inverse-Electron-Demand Hetero-Diels-Alder Reactions of 1-Oxa-1,3-Butadienes. Pałasz A Top Curr Chem (Cham); 2016 Jun; 374(3):24. PubMed ID: 27573264 [TBL] [Abstract][Full Text] [Related]
5. Second Generation TQ-Ligation for Cell Organelle Imaging. Zhang X; Dong T; Li Q; Liu X; Li L; Chen S; Lei X ACS Chem Biol; 2015 Jul; 10(7):1676-83. PubMed ID: 25901763 [TBL] [Abstract][Full Text] [Related]
6. Bioorthogonal Metabolic DNA Labelling using Vinyl Thioether-Modified Thymidine and o-Quinolinone Quinone Methide. Gubu A; Li L; Ning Y; Zhang X; Lee S; Feng M; Li Q; Lei X; Jo K; Tang X Chemistry; 2018 Apr; 24(22):5895-5900. PubMed ID: 29443432 [TBL] [Abstract][Full Text] [Related]
7. Coordination-Assisted Bioorthogonal Chemistry: Orthogonal Tetrazine Ligation with Vinylboronic Acid and a Strained Alkene. Eising S; Xin BT; Kleinpenning F; Heming JJA; Florea BI; Overkleeft HS; Bonger KM Chembiochem; 2018 Aug; 19(15):1648-1652. PubMed ID: 29806887 [TBL] [Abstract][Full Text] [Related]
8. An Extended Approach for the Development of Fluorogenic trans-Cyclooctene-Tetrazine Cycloadditions. Siegl SJ; Galeta J; Dzijak R; Vázquez A; Del Río-Villanueva M; Dračínský M; Vrabel M Chembiochem; 2019 Apr; 20(7):886-890. PubMed ID: 30561884 [TBL] [Abstract][Full Text] [Related]
9. Catalytic Activation of Bioorthogonal Chemistry with Light (CABL) Enables Rapid, Spatiotemporally Controlled Labeling and No-Wash, Subcellular 3D-Patterning in Live Cells Using Long Wavelength Light. Jemas A; Xie Y; Pigga JE; Caplan JL; Am Ende CW; Fox JM J Am Chem Soc; 2022 Feb; 144(4):1647-1662. PubMed ID: 35072462 [TBL] [Abstract][Full Text] [Related]
10. Proximity-Induced Bioorthogonal Chemistry Using Inverse Electron Demand Diels-Alder Reaction. Möhler JS; Werther P; Wombacher R Methods Mol Biol; 2019; 2008():147-163. PubMed ID: 31124095 [TBL] [Abstract][Full Text] [Related]
11. Vinylboronic Acids as Fast Reacting, Synthetically Accessible, and Stable Bioorthogonal Reactants in the Carboni-Lindsey Reaction. Eising S; Lelivelt F; Bonger KM Angew Chem Int Ed Engl; 2016 Sep; 55(40):12243-7. PubMed ID: 27605057 [TBL] [Abstract][Full Text] [Related]
12. Fluorescence Quenching Effects of Tetrazines and Their Diels-Alder Products: Mechanistic Insight Toward Fluorogenic Efficiency. Pinto-Pacheco B; Carbery WP; Khan S; Turner DB; Buccella D Angew Chem Int Ed Engl; 2020 Dec; 59(49):22140-22149. PubMed ID: 33245600 [TBL] [Abstract][Full Text] [Related]
13. Bioorthogonal Fluorescence Turn-On Labeling Based on Bicyclononyne-Tetrazine Cycloaddition Reactions that Form Pyridazine Products. Siegl SJ; Galeta J; Dzijak R; Dračínský M; Vrabel M Chempluschem; 2019 May; 84(5):493-497. PubMed ID: 31245251 [TBL] [Abstract][Full Text] [Related]
14. Predictive Multivariate Models for Bioorthogonal Inverse-Electron Demand Diels-Alder Reactions. Ravasco JMJM; Coelho JAS J Am Chem Soc; 2020 Mar; 142(9):4235-4241. PubMed ID: 32057243 [TBL] [Abstract][Full Text] [Related]
15. Arylethynyltrifluoroborate Dienophiles for on Demand Activation of IEDDA Reactions. Zawada Z; Guo Z; Oliveira BL; Navo CD; Li H; Cal PMSD; Corzana F; Jiménez-Osés G; Bernardes GJL Bioconjug Chem; 2021 Aug; 32(8):1812-1822. PubMed ID: 34264651 [TBL] [Abstract][Full Text] [Related]
16. Site-Specific Protein Labeling Utilizing Lipoic Acid Ligase (LplA) and Bioorthogonal Inverse Electron Demand Diels-Alder Reaction. Baalmann M; Best M; Wombacher R Methods Mol Biol; 2018; 1728():365-387. PubMed ID: 29405010 [TBL] [Abstract][Full Text] [Related]
17. From mechanism to mouse: a tale of two bioorthogonal reactions. Sletten EM; Bertozzi CR Acc Chem Res; 2011 Sep; 44(9):666-76. PubMed ID: 21838330 [TBL] [Abstract][Full Text] [Related]
18. Highly Stable and Selective Tetrazines for the Coordination-Assisted Bioorthogonal Ligation with Vinylboronic Acids. Eising S; Engwerda AHJ; Riedijk X; Bickelhaupt FM; Bonger KM Bioconjug Chem; 2018 Sep; 29(9):3054-3059. PubMed ID: 30080405 [TBL] [Abstract][Full Text] [Related]
19. Vinylboronic Acids as Efficient Bioorthogonal Reactants for Tetrazine Labeling in Living Cells. Eising S; van der Linden NGA; Kleinpenning F; Bonger KM Bioconjug Chem; 2018 Apr; 29(4):982-986. PubMed ID: 29438611 [TBL] [Abstract][Full Text] [Related]
20. Total Synthesis of (+)-Cytosporolide A via a Biomimetic Hetero-Diels-Alder Reaction. Takao K; Noguchi S; Sakamoto S; Kimura M; Yoshida K; Tadano K J Am Chem Soc; 2015 Dec; 137(50):15971-7. PubMed ID: 26633257 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]