These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

353 related articles for article (PubMed ID: 34137407)

  • 41. Discrimination of α-Thrombin and γ-Thrombin Using Aptamer-Functionalized Nanopore Sensing.
    Reynaud L; Bouchet-Spinelli A; Janot JM; Buhot A; Balme S; Raillon C
    Anal Chem; 2021 Jun; 93(22):7889-7897. PubMed ID: 34038092
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Label-free screening of single biomolecules through resistive pulse sensing technology for precision medicine applications.
    Harrer S; Kim SC; Schieber C; Kannam S; Gunn N; Moore S; Scott D; Bathgate R; Skafidas S; Wagner JM
    Nanotechnology; 2015 May; 26(18):182502. PubMed ID: 25875197
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Chemically tailoring nanopores for single-molecule sensing and glycomics.
    Hagan JT; Sheetz BS; Bandara YMNDY; Karawdeniya BI; Morris MA; Chevalier RB; Dwyer JR
    Anal Bioanal Chem; 2020 Oct; 412(25):6639-6654. PubMed ID: 32488384
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Force-Controlled Formation of Dynamic Nanopores for Single-Biomolecule Sensing and Single-Cell Secretomics.
    Schlotter T; Weaver S; Forró C; Momotenko D; Vörös J; Zambelli T; Aramesh M
    ACS Nano; 2020 Oct; 14(10):12993-13003. PubMed ID: 32914961
    [TBL] [Abstract][Full Text] [Related]  

  • 45. TEM based applications in solid state nanopores: From fabrication to liquid in-situ bio-imaging.
    Muhammad Sajeer P ; Simran ; Nukala P; Manoj M Varma
    Micron; 2022 Nov; 162():103347. PubMed ID: 36081256
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Recent Advances in Nanopore Technology for Copper Detection and Their Potential Applications.
    Vaneev AN; Timoshenko RV; Gorelkin PV; Klyachko NL; Erofeev AS
    Nanomaterials (Basel); 2023 May; 13(9):. PubMed ID: 37177118
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Nanopore-based sequencing and detection of nucleic acids.
    Ying YL; Zhang J; Gao R; Long YT
    Angew Chem Int Ed Engl; 2013 Dec; 52(50):13154-61. PubMed ID: 24214738
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Chemically functionalized conical PET nanopore for protein detection at the single-molecule level.
    Zhang Y; Chen X; Wang C; Roozbahani GM; Chang HC; Guan X
    Biosens Bioelectron; 2020 Oct; 165():112289. PubMed ID: 32729470
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Single molecule sensing by nanopores and nanopore devices.
    Gu LQ; Shim JW
    Analyst; 2010 Mar; 135(3):441-51. PubMed ID: 20174694
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Lifetime of glass nanopores in a PDMS chip for single-molecule sensing.
    Alawami MF; Bošković F; Zhu J; Chen K; Sandler SE; Keyser UF
    iScience; 2022 May; 25(5):104191. PubMed ID: 35479403
    [TBL] [Abstract][Full Text] [Related]  

  • 51. DNA translocations through solid-state plasmonic nanopores.
    Nicoli F; Verschueren D; Klein M; Dekker C; Jonsson MP
    Nano Lett; 2014 Dec; 14(12):6917-25. PubMed ID: 25347403
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Local electrical potential detection of DNA by nanowire-nanopore sensors.
    Xie P; Xiong Q; Fang Y; Qing Q; Lieber CM
    Nat Nanotechnol; 2011 Dec; 7(2):119-25. PubMed ID: 22157724
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Capture and Translocation Characteristics of Short Branched DNA Labels in Solid-State Nanopores.
    Karau P; Tabard-Cossa V
    ACS Sens; 2018 Jul; 3(7):1308-1315. PubMed ID: 29874054
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Optofluidic devices with integrated solid-state nanopores.
    Liu S; Hawkins AR; Schmidt H
    Mikrochim Acta; 2016 Apr; 183(4):1275-1287. PubMed ID: 27046940
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Fabrication of solid-state nanopores and its perspectives.
    Kudr J; Skalickova S; Nejdl L; Moulick A; Ruttkay-Nedecky B; Adam V; Kizek R
    Electrophoresis; 2015 Oct; 36(19):2367-79. PubMed ID: 26046318
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Biological Nanopores: Confined Spaces for Electrochemical Single-Molecule Analysis.
    Cao C; Long YT
    Acc Chem Res; 2018 Feb; 51(2):331-341. PubMed ID: 29364650
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Single molecule analysis by biological nanopore sensors.
    Ying YL; Cao C; Long YT
    Analyst; 2014 Aug; 139(16):3826-35. PubMed ID: 24991734
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Evaluation of Nanopore Sensor Design Using Electrical and Optical Analyses.
    Mayse LA; Imran A; Wang Y; Ahmad M; Oot RA; Wilkens S; Movileanu L
    ACS Nano; 2023 Jun; 17(11):10857-10871. PubMed ID: 37261404
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The application of single molecule nanopore sensing for quantitative analysis.
    Wu Y; Gooding JJ
    Chem Soc Rev; 2022 May; 51(10):3862-3885. PubMed ID: 35506519
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Solid-State Quad-Nanopore Array for High-Resolution Single-Molecule Analysis and Discrimination.
    Hu R; Zhu R; Wei G; Wang Z; Gu ZY; Wanunu M; Zhao Q
    Adv Mater; 2023 Jun; 35(24):e2211399. PubMed ID: 37037423
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.