BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

334 related articles for article (PubMed ID: 34137454)

  • 1. The hypertrophic chondrocyte: To be or not to be.
    Hallett SA; Ono W; Ono N
    Histol Histopathol; 2021 Oct; 36(10):1021-1036. PubMed ID: 34137454
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The skeleton: a multi-functional complex organ: the growth plate chondrocyte and endochondral ossification.
    Mackie EJ; Tatarczuch L; Mirams M
    J Endocrinol; 2011 Nov; 211(2):109-21. PubMed ID: 21642379
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Runx2 is required for hypertrophic chondrocyte mediated degradation of cartilage matrix during endochondral ossification.
    Rashid H; Chen H; Javed A
    Matrix Biol Plus; 2021 Dec; 12():100088. PubMed ID: 34805821
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Complementary interplay between matrix metalloproteinase-9, vascular endothelial growth factor and osteoclast function drives endochondral bone formation.
    Ortega N; Wang K; Ferrara N; Werb Z; Vu TH
    Dis Model Mech; 2010; 3(3-4):224-35. PubMed ID: 20142327
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Morphology and physiology of the epiphyseal growth plate.
    Burdan F; Szumiło J; Korobowicz A; Farooquee R; Patel S; Patel A; Dave A; Szumiło M; Solecki M; Klepacz R; Dudka J
    Folia Histochem Cytobiol; 2009; 47(1):5-16. PubMed ID: 19419931
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The parathyroid hormone-related protein and Indian hedgehog feedback loop in the growth plate.
    Kronenberg HM; Chung U
    Novartis Found Symp; 2001; 232():144-52; discussion 152-7. PubMed ID: 11277077
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Indian hedgehog signaling promotes chondrocyte differentiation in enchondral ossification in human cervical ossification of the posterior longitudinal ligament.
    Sugita D; Yayama T; Uchida K; Kokubo Y; Nakajima H; Yamagishi A; Takeura N; Baba H
    Spine (Phila Pa 1976); 2013 Oct; 38(22):E1388-96. PubMed ID: 23883825
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of growth factors regulating chondrocyte differentiation in the developing embryo.
    Vortkamp A
    Osteoarthritis Cartilage; 2001; 9 Suppl A():S109-17. PubMed ID: 11680674
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hypertrophic chondrocytes in the rabbit growth plate can proliferate and differentiate into osteogenic cells when capillary invasion is interposed by a membrane filter.
    Enishi T; Yukata K; Takahashi M; Sato R; Sairyo K; Yasui N
    PLoS One; 2014; 9(8):e104638. PubMed ID: 25121501
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SOX9 is a major negative regulator of cartilage vascularization, bone marrow formation and endochondral ossification.
    Hattori T; Müller C; Gebhard S; Bauer E; Pausch F; Schlund B; Bösl MR; Hess A; Surmann-Schmitt C; von der Mark H; de Crombrugghe B; von der Mark K
    Development; 2010 Mar; 137(6):901-11. PubMed ID: 20179096
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Interactions of chondrocytes and osteoblasts during endochondral bone formation].
    Higashikawa A; Kawaguchi H; Nakamura K; Chung U
    Clin Calcium; 2006 May; 16(5):829-36. PubMed ID: 16679626
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Endochondral ossification and the evolution of limb proportions.
    Rolian C
    Wiley Interdiscip Rev Dev Biol; 2020 Jul; 9(4):e373. PubMed ID: 31997553
    [TBL] [Abstract][Full Text] [Related]  

  • 13. BMP and Ihh/PTHrP signaling interact to coordinate chondrocyte proliferation and differentiation.
    Minina E; Wenzel HM; Kreschel C; Karp S; Gaffield W; McMahon AP; Vortkamp A
    Development; 2001 Nov; 128(22):4523-34. PubMed ID: 11714677
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A pathway to bone: signaling molecules and transcription factors involved in chondrocyte development and maturation.
    Kozhemyakina E; Lassar AB; Zelzer E
    Development; 2015 Mar; 142(5):817-31. PubMed ID: 25715393
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Growth Plate Chondrocytes: Skeletal Development, Growth and Beyond.
    Hallett SA; Ono W; Ono N
    Int J Mol Sci; 2019 Nov; 20(23):. PubMed ID: 31795305
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New morphological evidence of the 'fate' of growth plate hypertrophic chondrocytes in the general context of endochondral ossification.
    Pazzaglia UE; Reguzzoni M; Casati L; Sibilia V; Zarattini G; Raspanti M
    J Anat; 2020 Feb; 236(2):305-316. PubMed ID: 31820452
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hedgehog Signaling in Skeletal Development: Roles of Indian Hedgehog and the Mode of Its Action.
    Ohba S
    Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32933018
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Runx1 up-regulates chondrocyte to osteoblast lineage commitment and promotes bone formation by enhancing both chondrogenesis and osteogenesis.
    Tang CY; Chen W; Luo Y; Wu J; Zhang Y; McVicar A; McConnell M; Liu Y; Zhou HD; Li YP
    Biochem J; 2020 Jul; 477(13):2421-2438. PubMed ID: 32391876
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recapitulation of the parathyroid hormone-related peptide-Indian hedgehog pathway in the regenerating deer antler.
    Faucheux C; Nicholls BM; Allen S; Danks JA; Horton MA; Price JS
    Dev Dyn; 2004 Sep; 231(1):88-97. PubMed ID: 15305289
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Atf4 regulates chondrocyte proliferation and differentiation during endochondral ossification by activating Ihh transcription.
    Wang W; Lian N; Li L; Moss HE; Wang W; Perrien DS; Elefteriou F; Yang X
    Development; 2009 Dec; 136(24):4143-53. PubMed ID: 19906842
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.