These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 34138020)

  • 21. Biological Effect Evaluation of Different Sized Titanium Dioxide Nanoparticles Using Bombyx mori (Silkworm) as a Model Animal.
    Fometu SS; Ma Q; Wang J; Guo J; Ma L; Wu G
    Biol Trace Elem Res; 2022 Dec; 200(12):5260-5272. PubMed ID: 34997532
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In Situ Mineralizing Spinning of Strong and Tough Silk Fibers for Optical Waveguides.
    Zhang Y; Lu H; Zhang M; Hou Z; Li S; Wang H; Wu XE; Zhang Y
    ACS Nano; 2023 Mar; 17(6):5905-5912. PubMed ID: 36892421
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Silk-based biomaterials.
    Altman GH; Diaz F; Jakuba C; Calabro T; Horan RL; Chen J; Lu H; Richmond J; Kaplan DL
    Biomaterials; 2003 Feb; 24(3):401-16. PubMed ID: 12423595
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In vivo effects of metal ions on conformation and mechanical performance of silkworm silks.
    Wang X; Li Y; Liu Q; Chen Q; Xia Q; Zhao P
    Biochim Biophys Acta Gen Subj; 2017 Mar; 1861(3):567-576. PubMed ID: 27865996
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ancient fibrous biomaterials from silkworm protein fibroin and spider silk blends: Biomechanical patterns.
    Johari N; Khodaei A; Samadikuchaksaraei A; Reis RL; Kundu SC; Moroni L
    Acta Biomater; 2022 Nov; 153():38-67. PubMed ID: 36126911
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Preparation of porous scaffolds from silk fibroin extracted from the silk gland of Bombyx mori (B. mori).
    Yang M; Shuai Y; He W; Min S; Zhu L
    Int J Mol Sci; 2012; 13(6):7762-7775. PubMed ID: 22837725
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanically Reinforced Silkworm Silk Fiber by Hot Stretching.
    Lu H; Xia K; Jian M; Liang X; Yin Z; Zhang M; Wang H; Wang H; Li S; Zhang Y
    Research (Wash D C); 2022; 2022():9854063. PubMed ID: 35445199
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structures of Bombyx mori and Samia cynthia ricini silk fibroins studied with solid-state NMR.
    Yao J; Nakazawa Y; Asakura T
    Biomacromolecules; 2004; 5(3):680-8. PubMed ID: 15132647
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genetic engineered color silk: fabrication of a photonics material through a bioassisted technology.
    Shimizu K
    Bioinspir Biomim; 2018 May; 13(4):041003. PubMed ID: 29620530
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structural changes of Bombyx mori fibroin from silk gland to fiber as evidenced by Terahertz spectroscopy and other methods.
    Wu X; Wu X; Shao M; Yang B
    Int J Biol Macromol; 2017 Sep; 102():1202-1210. PubMed ID: 28487194
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Potential of silk fibroin/chondrocyte constructs of muga silkworm Antheraea assamensis for cartilage tissue engineering.
    Bhardwaj N; Singh YP; Devi D; Kandimalla R; Kotoky J; Mandal BB
    J Mater Chem B; 2016 Jun; 4(21):3670-3684. PubMed ID: 32263306
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bombyx mori silk fibroin liquid crystallinity and crystallization at aqueous fibroin-organic solvent interfaces.
    Valluzzi R; He SJ; Gido SP; Kaplan D
    Int J Biol Macromol; 1999; 24(2-3):227-36. PubMed ID: 10342769
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Directly obtaining high strength silk fiber from silkworm by feeding carbon nanotubes.
    Wang JT; Li LL; Zhang MY; Liu SL; Jiang LH; Shen Q
    Mater Sci Eng C Mater Biol Appl; 2014 Jan; 34():417-21. PubMed ID: 24268277
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Silkworm Gut Fibres from Silk Glands of
    Aznar-Cervantes SD; Pagán A; Candel MJ; Pérez-Rigueiro J; Cenis JL
    Int J Mol Sci; 2022 Mar; 23(7):. PubMed ID: 35409245
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microstructure of the silk fibroin-based hydrogel scaffolds derived from the orb-web spider Trichonephila clavata.
    Sun Y; Ku BJ; Moon MJ
    Appl Microsc; 2024 Feb; 54(1):3. PubMed ID: 38336879
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In situ biomineralization by silkworm feeding with ion precursors for the improved mechanical properties of silk fiber.
    Guo Z; Xie W; Gao Q; Wang D; Gao F; Li S; Zhao L
    Int J Biol Macromol; 2018 Apr; 109():21-26. PubMed ID: 29223755
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Study on the Effect of Stretching on the Strength of Natural Silk Based on Different Feeding Methods.
    Qu J; Feng P; Zhu Q; Ren Y; Li B
    ACS Biomater Sci Eng; 2022 Jan; 8(1):100-108. PubMed ID: 34918508
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Click Decoration of
    Teramoto H; Shirakawa M; Tamada Y
    Molecules; 2020 Sep; 25(18):. PubMed ID: 32911813
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular Interactions and Toughening Mechanisms in Silk Fibroin-Epoxy Resin Blend Films.
    Yang K; Yazawa K; Tsuchiya K; Numata K; Guan J
    Biomacromolecules; 2019 Jun; 20(6):2295-2304. PubMed ID: 31070895
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Coatings and films made of silk proteins.
    Borkner CB; Elsner MB; Scheibel T
    ACS Appl Mater Interfaces; 2014 Sep; 6(18):15611-25. PubMed ID: 25004395
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.