These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 34138091)

  • 1. Development of an Ultra-Sensitive and Flexible Piezoresistive Flow Sensor Using Vertical Graphene Nanosheets.
    Abolpour Moshizi S; Azadi S; Belford A; Razmjou A; Wu S; Han ZJ; Asadnia M
    Nanomicro Lett; 2020 May; 12(1):109. PubMed ID: 34138091
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polymeric piezoresistive airflow sensor to monitor respiratory patterns.
    Moshizi SA; Abedi A; Sanaeepur M; Pastras CJ; Han ZJ; Wu S; Asadnia M
    J R Soc Interface; 2021 Dec; 18(185):20210753. PubMed ID: 34875876
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Piezoresistive Carbon Nanofiber-Based Cilia-Inspired Flow Sensor.
    Sengupta D; Trap D; Kottapalli AAGP
    Nanomaterials (Basel); 2020 Jan; 10(2):. PubMed ID: 31991865
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Artificial Hair Cell Sensor Based on Nanofiber-Reinforced Thin Metal Films.
    A Moshizi S; Pastras CJ; Peng S; Wu S; Asadnia M
    Biomimetics (Basel); 2024 Jan; 9(1):. PubMed ID: 38248592
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of Ultrasensitive Biomimetic Auditory Hair Cells Based on Piezoresistive Hydrogel Nanocomposites.
    Ahmadi H; Moradi H; Pastras CJ; Abolpour Moshizi S; Wu S; Asadnia M
    ACS Appl Mater Interfaces; 2021 Sep; 13(37):44904-44915. PubMed ID: 34516096
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioinspired Cilia Sensors with Graphene Sensing Elements Fabricated Using 3D Printing and Casting.
    Kamat AM; Pei Y; Kottapalli AGP
    Nanomaterials (Basel); 2019 Jun; 9(7):. PubMed ID: 31262009
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrasensitive and Stretchable Strain Sensors Based on Mazelike Vertical Graphene Network.
    Wu S; Peng S; Han ZJ; Zhu H; Wang CH
    ACS Appl Mater Interfaces; 2018 Oct; 10(42):36312-36322. PubMed ID: 30256087
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioinspired PDMS-graphene cantilever flow sensors using 3D printing and replica moulding.
    Kamat AM; Zheng X; Jayawardhana B; Kottapalli AGP
    Nanotechnology; 2021 Feb; 32(9):095501. PubMed ID: 33217747
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiscale Hierarchical Design of a Flexible Piezoresistive Pressure Sensor with High Sensitivity and Wide Linearity Range.
    Shi J; Wang L; Dai Z; Zhao L; Du M; Li H; Fang Y
    Small; 2018 Jul; 14(27):e1800819. PubMed ID: 29847706
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultra-Sensitive Flexible Tactile Sensor Based on Graphene Film.
    Lü X; Qi L; Hu H; Li X; Bai G; Chen J; Bao W
    Micromachines (Basel); 2019 Oct; 10(11):. PubMed ID: 31661933
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly Sensitive Flexible Piezoresistive Sensor with 3D Conductive Network.
    Yu R; Xia T; Wu B; Yuan J; Ma L; Cheng GJ; Liu F
    ACS Appl Mater Interfaces; 2020 Aug; 12(31):35291-35299. PubMed ID: 32640161
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Flexible and Highly Sensitive Pressure Sensor Based on a PDMS Foam Coated with Graphene Nanoplatelets.
    Rinaldi A; Tamburrano A; Fortunato M; Sarto MS
    Sensors (Basel); 2016 Dec; 16(12):. PubMed ID: 27999251
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A miniaturized piezoresistive flow sensor for real-time monitoring of intravenous infusion.
    Hagihghi R; Razmjou A; Orooji Y; Warkiani ME; Asadnia M
    J Biomed Mater Res B Appl Biomater; 2020 Feb; 108(2):568-576. PubMed ID: 31106527
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioinspired Self-Powered Piezoresistive Sensors for Simultaneous Monitoring of Human Health and Outdoor UV Light Intensity.
    Yu Z; Xu J; Gong H; Li Y; Li L; Wei Q; Tang D
    ACS Appl Mater Interfaces; 2022 Feb; 14(4):5101-5111. PubMed ID: 35050572
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultralightweight and 3D Squeezable Graphene-Polydimethylsiloxane Composite Foams as Piezoresistive Sensors.
    Sengupta D; Pei Y; Kottapalli AGP
    ACS Appl Mater Interfaces; 2019 Sep; 11(38):35201-35211. PubMed ID: 31460740
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomimetic Soft Polymer Microstructures and Piezoresistive Graphene MEMS Sensors Using Sacrificial Metal 3D Printing.
    Kamat AM; Pei Y; Jayawardhana B; Kottapalli AGP
    ACS Appl Mater Interfaces; 2021 Jan; 13(1):1094-1104. PubMed ID: 33395251
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bone-inspired (GNEC/HAPAAm) hydrogel with fatigue-resistance for use in underwater robots and highly piezoresistive sensors.
    Lyu C; Wen B; Bai Y; Luo D; Wang X; Zhang Q; Xing C; Kong T; Diao D; Zhang X
    Microsyst Nanoeng; 2023; 9():99. PubMed ID: 37502758
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of Flexible Pressure Sensor Based on Conical Microstructure PDMS-Bilayer Graphene.
    Cheng L; Wang R; Hao X; Liu G
    Sensors (Basel); 2021 Jan; 21(1):. PubMed ID: 33406679
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Research on an Artificial Lateral Line System Based on a Bionic Hair Sensor with Resonant Readout.
    Yang B; Zhang T; Liang Z; Lu C
    Micromachines (Basel); 2019 Oct; 10(11):. PubMed ID: 31671895
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flexible Piezoresistive Sensors Embedded in 3D Printed Tires.
    Emon MO; Choi JW
    Sensors (Basel); 2017 Mar; 17(3):. PubMed ID: 28327533
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.