These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
307 related articles for article (PubMed ID: 34138137)
1. 3D Printing of NiCoP/Ti Yu L; Li W; Wei C; Yang Q; Shao Y; Sun J Nanomicro Lett; 2020 Jul; 12(1):143. PubMed ID: 34138137 [TBL] [Abstract][Full Text] [Related]
2. 3D Printing of Porous Nitrogen-Doped Ti Fan Z; Wei C; Yu L; Xia Z; Cai J; Tian Z; Zou G; Dou SX; Sun J ACS Nano; 2020 Jan; 14(1):867-876. PubMed ID: 31898892 [TBL] [Abstract][Full Text] [Related]
3. Opening MXene Ion Transport Channels by Intercalating PANI Nanoparticles from the Self-Assembly Approach for High Volumetric and Areal Energy Density Supercapacitors. Wang X; Wang Y; Liu D; Li X; Xiao H; Ma Y; Xu M; Yuan G; Chen G ACS Appl Mater Interfaces; 2021 Jul; 13(26):30633-30642. PubMed ID: 34156249 [TBL] [Abstract][Full Text] [Related]
4. NiCoP Nanoarray: A Superior Pseudocapacitor Electrode with High Areal Capacitance. Kong M; Wang Z; Wang W; Ma M; Liu D; Hao S; Kong R; Du G; Asiri AM; Yao Y; Sun X Chemistry; 2017 Mar; 23(18):4435-4441. PubMed ID: 28295716 [TBL] [Abstract][Full Text] [Related]
5. 3D Printing of Additive-Free 2D Ti Orangi J; Hamade F; Davis VA; Beidaghi M ACS Nano; 2020 Jan; 14(1):640-650. PubMed ID: 31891247 [TBL] [Abstract][Full Text] [Related]
6. A 3D-Printed Proton Pseudocapacitor with Ultrahigh Mass Loading and Areal Energy Density for Fast Energy Storage at Low Temperature. Zhang M; Xu T; Wang D; Yao T; Xu Z; Liu Q; Shen L; Yu Y Adv Mater; 2023 Jun; 35(23):e2209963. PubMed ID: 36626913 [TBL] [Abstract][Full Text] [Related]
7. 3D Printing of Freestanding MXene Architectures for Current-Collector-Free Supercapacitors. Yang W; Yang J; Byun JJ; Moissinac FP; Xu J; Haigh SJ; Domingos M; Bissett MA; Dryfe RAW; Barg S Adv Mater; 2019 Sep; 31(37):e1902725. PubMed ID: 31343084 [TBL] [Abstract][Full Text] [Related]
8. 3D-Printed Zn-Ion Hybrid Capacitor Enabled by Universal Divalent Cation-Gelated Additive-Free Ti Fan Z; Jin J; Li C; Cai J; Wei C; Shao Y; Zou G; Sun J ACS Nano; 2021 Feb; 15(2):3098-3107. PubMed ID: 33576601 [TBL] [Abstract][Full Text] [Related]
9. 3D Printing MXene-Based Electrodes for Supercapacitors. Jiang X; Bai J; Wijerathne B; Zhou Q; Zhang F; Liao T; Sun Z Chem Asian J; 2024 Dec; 19(23):e202400568. PubMed ID: 39155268 [TBL] [Abstract][Full Text] [Related]
10. 3D Printed Template-Assisted Assembly of Additive-Free Ti Yang C; Wu X; Xia H; Zhou J; Wu Y; Yang R; Zhou G; Qiu L ACS Nano; 2022 Feb; 16(2):2699-2710. PubMed ID: 35084815 [TBL] [Abstract][Full Text] [Related]
11. Architectural design and optimization of internal structures in 3D printed electrodes for superior supercapacitor performance. Gu S; Du G; Su Y; Zhang Y; Zhang Y; Li L; Pang H; Zhou H J Colloid Interface Sci; 2025 Jan; 677(Pt B):21-29. PubMed ID: 39133995 [TBL] [Abstract][Full Text] [Related]
12. Interfacial Control of NiCoP@NiCoP Core-Shell Nanoflake Arrays as Advanced Cathodes for Ultrahigh-Energy-Density Fiber-Shaped Asymmetric Supercapacitors. Li Q Small; 2021 Sep; 17(35):e2101617. PubMed ID: 34235844 [TBL] [Abstract][Full Text] [Related]
13. A Multi-Scale Structural Engineering Strategy for High-Performance MXene Hydrogel Supercapacitor Electrode. Huang X; Huang J; Yang D; Wu P Adv Sci (Weinh); 2021 Sep; 8(18):e2101664. PubMed ID: 34338445 [TBL] [Abstract][Full Text] [Related]
14. 3D-Printed Structure Boosts the Kinetics and Intrinsic Capacitance of Pseudocapacitive Graphene Aerogels. Yao B; Chandrasekaran S; Zhang H; Ma A; Kang J; Zhang L; Lu X; Qian F; Zhu C; Duoss EB; Spadaccini CM; Worsley MA; Li Y Adv Mater; 2020 Feb; 32(8):e1906652. PubMed ID: 31951066 [TBL] [Abstract][Full Text] [Related]
15. Size-controlled Ag quantum dots decorated on binder-free hierarchical NiCoP films by magnetron sputtering to boost electrochemical performance for supercapacitors. Liu Y; Zhong K; Liu C; Yang Y; Zhao Z; Li T; Lu Q Nanoscale; 2021 Apr; 13(16):7761-7773. PubMed ID: 33871518 [TBL] [Abstract][Full Text] [Related]
16. Dual modulation of the morphology and electric conductivity of NiCoP on nickel foam by Fe doping as a superior stability electrode for high energy supercapacitors. Chang X; Liu T; Li W; He M; Ren Z; Bai J Nanoscale; 2021 Oct; 13(41):17442-17456. PubMed ID: 34647557 [TBL] [Abstract][Full Text] [Related]
17. Iron-doped nickel-cobalt bimetallic phosphide nanowire hybrids for solid-state supercapacitors with excellent electromagnetic interference shielding. Du C; Wan G; Wu L; Shi S; Zhang Y; Deng Z; Zhang Y; Wei Q; Li L; Wang G J Colloid Interface Sci; 2024 Jan; 654(Pt A):486-494. PubMed ID: 37862800 [TBL] [Abstract][Full Text] [Related]
18. Wood-Derived, Conductivity and Hierarchical Pore Integrated Thick Electrode Enabling High Areal/Volumetric Energy Density for Hybrid Capacitors. Wang F; Liu X; Duan G; Yang H; Cheong JY; Lee J; Ahn J; Zhang Q; He S; Han J; Zhao Y; Kim ID; Jiang S Small; 2021 Sep; 17(35):e2102532. PubMed ID: 34302441 [TBL] [Abstract][Full Text] [Related]
19. Inkjet Printing Transparent and Conductive MXene (Ti Wen D; Wang X; Liu L; Hu C; Sun C; Wu Y; Zhao Y; Zhang J; Liu X; Ying G ACS Appl Mater Interfaces; 2021 Apr; 13(15):17766-17780. PubMed ID: 33843188 [TBL] [Abstract][Full Text] [Related]
20. Activating Ion Channels in Collapsed Hydrogel Derived Densified MXene Films with Cellulose Nanofibers to Overcome the Areal Versus Volumetric Capacitance Trade-Off. Dutta P; Deb SK; Patra A; Karim GM; Majumder A; Kumar P; Iyer PK; Padma N; Maiti UN Small; 2024 Aug; 20(35):e2400119. PubMed ID: 38676344 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]