These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 34138140)
1. Perfection of Perovskite Grain Boundary Passivation by Rhodium Incorporation for Efficient and Stable Solar Cells. Liu W; Liu N; Ji S; Hua H; Ma Y; Hu R; Zhang J; Chu L; Li X; Huang W Nanomicro Lett; 2020 Jun; 12(1):119. PubMed ID: 34138140 [TBL] [Abstract][Full Text] [Related]
2. An in-situ defect passivation through a green anti-solvent approach for high-efficiency and stable perovskite solar cells. Liu C; Huang L; Zhou X; Wang X; Yao J; Liu Z; Liu SF; Ma W; Xu B Sci Bull (Beijing); 2021 Jul; 66(14):1419-1428. PubMed ID: 36654368 [TBL] [Abstract][Full Text] [Related]
4. Grain boundary defects passivation by bridging diammonium toward stable and efficient perovskite solar cells. Shang X; Chen C; Meng F; Zhang Z; Li M; Gao D; Chen C J Colloid Interface Sci; 2023 Nov; 649():528-534. PubMed ID: 37356154 [TBL] [Abstract][Full Text] [Related]
5. Enhanced Efficiency of Air-Stable CsPbBr Zhang W; Liu X; He B; Zhu J; Li X; Shen K; Chen H; Duan Y; Tang Q ACS Appl Mater Interfaces; 2020 Aug; 12(32):36092-36101. PubMed ID: 32663398 [TBL] [Abstract][Full Text] [Related]
6. Highly Efficient and Stable Perovskite Solar Cells Using an Effective Chelate-Assisted Defect Passivation Strategy. Jiang J; Fang X; Xu Y; Jia X; Chen Y; Chen Y; Hu H; Yuan N; Ding J ChemSusChem; 2020 Jan; 13(2):412-418. PubMed ID: 31680441 [TBL] [Abstract][Full Text] [Related]
7. Monodisperse Carbon Nitride Nanosheets as Multifunctional Additives for Efficient and Durable Perovskite Solar Cells. Kim DW; Choi J; Byun J; Kim JT; Lee GS; Kim JG; Kim D; Boonmongkolras P; McMillan PF; Lee HM; Clancy AJ; Shin B; Kim SO ACS Appl Mater Interfaces; 2021 Dec; 13(51):61215-61226. PubMed ID: 34905920 [TBL] [Abstract][Full Text] [Related]
8. Extremely Low-Cost and Green Cellulose Passivating Perovskites for Stable and High-Performance Solar Cells. Yang J; Xiong S; Qu T; Zhang Y; He X; Guo X; Zhao Q; Braun S; Chen J; Xu J; Li Y; Liu X; Duan C; Tang J; Fahlman M; Bao Q ACS Appl Mater Interfaces; 2019 Apr; 11(14):13491-13498. PubMed ID: 30880387 [TBL] [Abstract][Full Text] [Related]
9. Synergistic Ion-Anchoring Passivation for Perovskite Solar Cells with Efficiency Exceeding 24% and Ultra-Ambient Stability. Cao Y; Wang X; Sun J; Xiang L; Li D; He L; Gao F; Chen C; Li S ACS Appl Mater Interfaces; 2023 Aug; 15(33):40032-40041. PubMed ID: 37556164 [TBL] [Abstract][Full Text] [Related]
10. Dual-Functional Additive to Simultaneously Modify the Interface and Grain Boundary for Highly Efficient and Hysteresis-Free Perovskite Solar Cells. Rao Y; Li Z; Liu D; Chen C; Wang X; Cui G; Pang S ACS Appl Mater Interfaces; 2021 May; 13(17):20043-20050. PubMed ID: 33896179 [TBL] [Abstract][Full Text] [Related]
11. Enhancing the Performance of Inverted Perovskite Solar Cells via Grain Boundary Passivation with Carbon Quantum Dots. Ma Y; Zhang H; Zhang Y; Hu R; Jiang M; Zhang R; Lv H; Tian J; Chu L; Zhang J; Xue Q; Yip HL; Xia R; Li X; Huang W ACS Appl Mater Interfaces; 2019 Jan; 11(3):3044-3052. PubMed ID: 30585492 [TBL] [Abstract][Full Text] [Related]
12. Defect Passivation Scheme toward High-Performance Halide Perovskite Solar Cells. Du B; He K; Zhao X; Li B Polymers (Basel); 2023 Apr; 15(9):. PubMed ID: 37177158 [TBL] [Abstract][Full Text] [Related]
13. Stable and Efficient Organo-Metal Halide Hybrid Perovskite Solar Cells via π-Conjugated Lewis Base Polymer Induced Trap Passivation and Charge Extraction. Qin PL; Yang G; Ren ZW; Cheung SH; So SK; Chen L; Hao J; Hou J; Li G Adv Mater; 2018 Mar; 30(12):e1706126. PubMed ID: 29411431 [TBL] [Abstract][Full Text] [Related]
14. Synergistic Surface Defect Passivation of Ionic Liquids for Efficient and Stable MAPbI Duan S; Sun Q; Liu G; Deng J; Meng X; Shen B; Hu D; Kang B; Silva SRP ACS Appl Mater Interfaces; 2023 Oct; 15(39):46483-46492. PubMed ID: 37748040 [TBL] [Abstract][Full Text] [Related]
15. Flexible p-i-n perovskite solar cell with optimized performance by KBF Li F; Liu K; Dai J Opt Express; 2024 Jan; 32(1):366-378. PubMed ID: 38175067 [TBL] [Abstract][Full Text] [Related]
16. Perfection of Perovskite Grain Boundary Passivation by Eu-Porphyrin Complex for Overall-Stable Perovskite Solar Cells. Feng X; Chen R; Nan ZA; Lv X; Meng R; Cao J; Tang Y Adv Sci (Weinh); 2019 Mar; 6(5):1802040. PubMed ID: 30886810 [TBL] [Abstract][Full Text] [Related]
17. Passivation of Grain Boundary by Squaraine Zwitterions for Defect Passivation and Efficient Perovskite Solar Cells. Wang Z; Pradhan A; Kamarudin MA; Pandey M; Pandey SS; Zhang P; Ng CH; Tripathi ASM; Ma T; Hayase S ACS Appl Mater Interfaces; 2019 Mar; 11(10):10012-10020. PubMed ID: 30775904 [TBL] [Abstract][Full Text] [Related]
18. Decreased surface defects and non-radiative recombination Kara DA; Cirak D; Gultekin B Phys Chem Chem Phys; 2022 May; 24(17):10384-10393. PubMed ID: 35438697 [TBL] [Abstract][Full Text] [Related]
19. Beneficial effects of potassium iodide incorporation on grain boundaries and interfaces of perovskite solar cells. Yang Y; Wu L; Hao X; Tang Z; Lai H; Zhang J; Wang W; Feng L RSC Adv; 2019 Sep; 9(49):28561-28568. PubMed ID: 35529646 [TBL] [Abstract][Full Text] [Related]
20. Tungstate-mediated In-situ Passivation of Grain Boundary Grooves in Perovskite Solar Cells. Fan R; Song Q; Huang Z; Ma Y; Xiao M; Huang X; Zai H; Kang J; Xie H; Gao Y; Wang L; Zhang Y; Wang L; Wang F; Zhang X; Zhou W; Li N; Wang X; Bai Y; Liu G; Chen Q; Wang L; Zhou H Angew Chem Int Ed Engl; 2023 Jun; 62(24):e202303176. PubMed ID: 37060295 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]