These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
304 related articles for article (PubMed ID: 34138146)
1. Water Splitting: From Electrode to Green Energy System. Li X; Zhao L; Yu J; Liu X; Zhang X; Liu H; Zhou W Nanomicro Lett; 2020 Jun; 12(1):131. PubMed ID: 34138146 [TBL] [Abstract][Full Text] [Related]
2. Recent Progress in Energy-Driven Water Splitting. Tee SY; Win KY; Teo WS; Koh LD; Liu S; Teng CP; Han MY Adv Sci (Weinh); 2017 May; 4(5):1600337. PubMed ID: 28546906 [TBL] [Abstract][Full Text] [Related]
3. Recent Advances and Future Perspectives of Metal-Based Electrocatalysts for Overall Electrochemical Water Splitting. Hayat A; Sohail M; Ali H; Taha TA; Qazi HIA; Ur Rahman N; Ajmal Z; Kalam A; Al-Sehemi AG; Wageh S; Amin MA; Palamanit A; Nawawi WI; Newair EF; Orooji Y Chem Rec; 2023 Feb; 23(2):e202200149. PubMed ID: 36408911 [TBL] [Abstract][Full Text] [Related]
4. Advances and challenges in the modification of photoelectrode materials for photoelectrocatalytic water splitting. Yang L; Li F; Xiang Q Mater Horiz; 2024 Apr; 11(7):1638-1657. PubMed ID: 38324371 [TBL] [Abstract][Full Text] [Related]
5. Decoupling Hydrogen and Oxygen Production in Acidic Water Electrolysis Using a Polytriphenylamine-Based Battery Electrode. Ma Y; Dong X; Wang Y; Xia Y Angew Chem Int Ed Engl; 2018 Mar; 57(11):2904-2908. PubMed ID: 29384260 [TBL] [Abstract][Full Text] [Related]
6. Self-Powered Seawater Electrolysis Based on a Triboelectric Nanogenerator for Hydrogen Production. Zhang B; Zhang C; Yang O; Yuan W; Liu Y; He L; Hu Y; Zhao Z; Zhou L; Wang J; Wang ZL ACS Nano; 2022 Sep; 16(9):15286-15296. PubMed ID: 36098463 [TBL] [Abstract][Full Text] [Related]
7. Synthesis of Clean Hydrogen Gas from Waste Plastic at Zero Net Cost. Wyss KM; Silva KJ; Bets KV; Algozeeb WA; Kittrell C; Teng CH; Choi CH; Chen W; Beckham JL; Yakobson BI; Tour JM Adv Mater; 2023 Nov; 35(48):e2306763. PubMed ID: 37694496 [TBL] [Abstract][Full Text] [Related]
8. Innovative Strategies for Electrocatalytic Water Splitting. You B; Sun Y Acc Chem Res; 2018 Jul; 51(7):1571-1580. PubMed ID: 29537825 [TBL] [Abstract][Full Text] [Related]
9. Porous Carbon Template Decorated with MOF-Driven Bimetallic Phosphide: A Suitable Heterostructure for the Production of Uninterrupted Green Hydrogen via Renewable Energy Storage Device. Afshan M; Sachdeva PK; Rani D; Das S; Pahuja M; Siddiqui SA; Rani S; Ghosh R; Chaudhary N; Jyoti ; Riyajuddin S; Bera C; Ghosh K Small; 2023 Dec; 19(50):e2304399. PubMed ID: 37626463 [TBL] [Abstract][Full Text] [Related]
10. Solar water splitting for hydrogen production using Zn electrodes: a green and sustainable approach. Singh D; Singh I; Arya RK; Mishra V; Singh D; Alam S; Giri BS Environ Sci Pollut Res Int; 2024 Sep; ():. PubMed ID: 39235758 [TBL] [Abstract][Full Text] [Related]
11. Semiconductor Nanomaterial Photocatalysts for Water-Splitting Hydrogen Production: The Holy Grail of Converting Solar Energy to Fuel. Mohsin M; Ishaq T; Bhatti IA; Maryam ; Jilani A; Melaibari AA; Abu-Hamdeh NH Nanomaterials (Basel); 2023 Jan; 13(3):. PubMed ID: 36770508 [TBL] [Abstract][Full Text] [Related]
12. Photobiohydrogen Production and Strategies for H Khetkorn W; Raksajit W; Maneeruttanarungroj C; Lindblad P Adv Biochem Eng Biotechnol; 2023; 183():253-279. PubMed ID: 37009974 [TBL] [Abstract][Full Text] [Related]
13. Metal-Organic Framework Nanosheet Electrocatalysts for Efficient H Wei X; Wang S; Hua Z; Chen L; Shi J ACS Appl Mater Interfaces; 2018 Aug; 10(30):25422-25428. PubMed ID: 29987922 [TBL] [Abstract][Full Text] [Related]
14. The Minderoo-Monaco Commission on Plastics and Human Health. Landrigan PJ; Raps H; Cropper M; Bald C; Brunner M; Canonizado EM; Charles D; Chiles TC; Donohue MJ; Enck J; Fenichel P; Fleming LE; Ferrier-Pages C; Fordham R; Gozt A; Griffin C; Hahn ME; Haryanto B; Hixson R; Ianelli H; James BD; Kumar P; Laborde A; Law KL; Martin K; Mu J; Mulders Y; Mustapha A; Niu J; Pahl S; Park Y; Pedrotti ML; Pitt JA; Ruchirawat M; Seewoo BJ; Spring M; Stegeman JJ; Suk W; Symeonides C; Takada H; Thompson RC; Vicini A; Wang Z; Whitman E; Wirth D; Wolff M; Yousuf AK; Dunlop S Ann Glob Health; 2023; 89(1):23. PubMed ID: 36969097 [TBL] [Abstract][Full Text] [Related]
16. Nanomaterials for photo-electrochemical water splitting: a review. Dhiman V; Singh S; Srivastava V; Garg S; Saran AD Environ Sci Pollut Res Int; 2023 Oct; ():. PubMed ID: 37906330 [TBL] [Abstract][Full Text] [Related]
17. Harvesting Hydropower via a Magnetoelastic Generator for Sustainable Water Splitting. Ock IW; Zhao X; Tat T; Xu J; Chen J ACS Nano; 2022 Oct; 16(10):16816-16823. PubMed ID: 36201791 [TBL] [Abstract][Full Text] [Related]
18. The route for commercial photoelectrochemical water splitting: a review of large-area devices and key upscaling challenges. Vilanova A; Dias P; Lopes T; Mendes A Chem Soc Rev; 2024 Mar; 53(5):2388-2434. PubMed ID: 38288870 [TBL] [Abstract][Full Text] [Related]
19. Recent Advances in Power-to-X Technology for the Production of Fuels and Chemicals. Rego de Vasconcelos B; Lavoie JM Front Chem; 2019; 7():392. PubMed ID: 31231632 [TBL] [Abstract][Full Text] [Related]
20. Three-dimensional ordered macroporous molybdenum doped NiCoP honeycomb electrode for two-step water electrolysis. Sun C; He Y; Alharbi NS; Yang S; Chen C J Colloid Interface Sci; 2023 Jul; 642():13-22. PubMed ID: 37001452 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]