BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

314 related articles for article (PubMed ID: 34138177)

  • 1. High-Performance Aqueous Zinc-Ion Batteries Realized by MOF Materials.
    Pu X; Jiang B; Wang X; Liu W; Dong L; Kang F; Xu C
    Nanomicro Lett; 2020 Jul; 12(1):152. PubMed ID: 34138177
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dual Porous 3D Zinc Anodes toward Dendrite-Free and Long Cycle Life Zinc-Ion Batteries.
    Chen K; Guo H; Li W; Wang Y
    ACS Appl Mater Interfaces; 2021 Nov; 13(46):54990-54996. PubMed ID: 34767331
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A ZIF-8 Host for Dendrite-Free Zinc Anodes and N,O Dual-doped Carbon Cathodes for High-Performance Zinc-Ion Hybrid Capacitors.
    Lei L; Zheng Y; Zhang X; Su Y; Zhou X; Wu S; Shen J
    Chem Asian J; 2021 Aug; 16(15):2146-2153. PubMed ID: 34132493
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metal-Organic Framework-Based Materials for Aqueous Zinc-Ion Batteries: Energy Storage Mechanism and Function.
    Xu X; Chen Y; Liu D; Zheng D; Dai X; Shi W; Cao X
    Chem Rec; 2022 Oct; 22(10):e202200079. PubMed ID: 35635378
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coordinately Unsaturated Manganese-Based Metal-Organic Frameworks as a High-Performance Cathode for Aqueous Zinc-Ion Batteries.
    Yin C; Pan C; Liao X; Pan Y; Yuan L
    ACS Appl Mater Interfaces; 2021 Aug; 13(30):35837-35847. PubMed ID: 34297523
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Facile Chemical Method Enabling Uniform Zn Deposition for Improved Aqueous Zn-Ion Batteries.
    Liu C; Lu Q; Omar A; Mikhailova D
    Nanomaterials (Basel); 2021 Mar; 11(3):. PubMed ID: 33803524
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thickness-Controlled Synthesis of Compact and Uniform MOF Protective Layer for Zinc Anode to Achieve 85% Zinc Utilization.
    Xiang Y; Zhong Y; Tan P; Zhou L; Yin G; Pan H; Li X; Jiang Y; Xu M; Zhang X
    Small; 2023 Oct; 19(43):e2302161. PubMed ID: 37376836
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly Reversible and Rechargeable Safe Zn Batteries Based on a Triethyl Phosphate Electrolyte.
    Naveed A; Yang H; Yang J; Nuli Y; Wang J
    Angew Chem Int Ed Engl; 2019 Feb; 58(9):2760-2764. PubMed ID: 30604584
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Continuous Amorphous Metal-Organic Frameworks Layer Boosts the Performance of Metal Anodes.
    Xiang Y; Zhou L; Tan P; Dai S; Wang Y; Bao S; Lu Y; Jiang Y; Xu M; Zhang X
    ACS Nano; 2023 Oct; 17(19):19275-19287. PubMed ID: 37781928
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Valid design and evaluation of cathode and anode materials of aqueous zinc ion batteries with high-rate capability and cycle stability.
    Lee SH; Han J; Cho TW; Kim GH; Yoo YJ; Park J; Kim YJ; Lee EJ; Lee S; Mhin S; Park SY; Yoo J; Lee SH
    Nanoscale; 2023 Feb; 15(8):3737-3748. PubMed ID: 36744925
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Uniform Zn Deposition Achieved by Ag Coating for Improved Aqueous Zinc-Ion Batteries.
    Lu Q; Liu C; Du Y; Wang X; Ding L; Omar A; Mikhailova D
    ACS Appl Mater Interfaces; 2021 Apr; 13(14):16869-16875. PubMed ID: 33784067
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metal-Organic Framework-Based Materials in Aqueous Zinc-Ion Batteries.
    Wu F; Wu B; Mu Y; Zhou B; Zhang G; Zeng L
    Int J Mol Sci; 2023 Mar; 24(7):. PubMed ID: 37047010
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Robust Zinc Anode Enabled by Sulfonate-Rich MOF-Modified Separator.
    Chen R; Zhang G; Zhou H; Li J; Li J; Chung LH; Hu X; He J
    Small; 2024 Feb; 20(8):e2305687. PubMed ID: 37840433
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How Is Cycle Life of Three-Dimensional Zinc Metal Anodes with Carbon Fiber Backbones Affected by Depth of Discharge and Current Density in Zinc-Ion Batteries?
    Li J; Lin Q; Zheng Z; Cao L; Lv W; Chen Y
    ACS Appl Mater Interfaces; 2022 Mar; 14(10):12323-12330. PubMed ID: 35234443
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving the Performance of Aqueous Zinc-ion Batteries by Inhibiting Zinc Dendrite Growth: Recent Progress.
    Ho VC; Lim H; Kim MJ; Mun J
    Chem Asian J; 2022 Jul; 17(14):e202200289. PubMed ID: 35546083
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hexagonal WO
    Chen X; Huang R; Ding M; He H; Wang F; Yin S
    ACS Appl Mater Interfaces; 2022 Jan; 14(3):3961-3969. PubMed ID: 35025198
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interfacial Engineering Coupled Valence Tuning of MoO
    Liu Y; Wang J; Zeng Y; Liu J; Liu X; Lu X
    Small; 2020 Mar; 16(11):e1907458. PubMed ID: 32068969
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anode Materials for Aqueous Zinc Ion Batteries: Mechanisms, Properties, and Perspectives.
    Wang T; Li C; Xie X; Lu B; He Z; Liang S; Zhou J
    ACS Nano; 2020 Dec; 14(12):16321-16347. PubMed ID: 33314908
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mn
    Gou L; Mou KL; Fan XY; Zhao MJ; Wang Y; Xue D; Li DL
    Dalton Trans; 2020 Jan; 49(3):711-718. PubMed ID: 31848556
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dendrite-Free Zinc Anodes Enabled by Exploring Polar-Face-Rich 2D ZnO Interfacial Layers for Rechargeable Zn-Ion Batteries.
    Hu X; Borowiec J; Zhu Y; Liu X; Wu R; Ganose AM; Parkin IP; Boruah BD
    Small; 2024 May; 20(18):e2306827. PubMed ID: 38054756
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.