These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 34138216)
1. Hierarchical Magnetic Network Constructed by CoFe Nanoparticles Suspended Within "Tubes on Rods" Matrix Toward Enhanced Microwave Absorption. Xu C; Wang L; Li X; Qian X; Wu Z; You W; Pei K; Qin G; Zeng Q; Yang Z; Jin C; Che R Nanomicro Lett; 2021 Jan; 13(1):47. PubMed ID: 34138216 [TBL] [Abstract][Full Text] [Related]
2. One-dimensional core-shell CoC@CoFe/C@PPy composites for high-efficiency microwave absorption. Jiao Z; Hu J; Ma M; Liu Y; Zhao J; Wang X; Luan S; Zhang L J Colloid Interface Sci; 2023 Nov; 650(Pt B):2014-2023. PubMed ID: 37531668 [TBL] [Abstract][Full Text] [Related]
3. Preparation of CoFe@N-doped C/rGO composites derived from CoFe Prussian blue analogues for efficient microwave absorption. Wei S; Chen T; Shi Z; Chen S J Colloid Interface Sci; 2022 Mar; 610():395-406. PubMed ID: 34923277 [TBL] [Abstract][Full Text] [Related]
4. Fabrication of bimetallic metal-organic frameworks derived cobalt iron alloy@carbon-carbon nanotubes composites as ultrathin and high-efficiency microwave absorbers. Shu R; Wu Y; Li X; Li N; Shi J J Colloid Interface Sci; 2022 May; 613():477-487. PubMed ID: 35051722 [TBL] [Abstract][Full Text] [Related]
5. Multidimension-Controllable Synthesis of MOF-Derived Co@N-Doped Carbon Composite with Magnetic-Dielectric Synergy toward Strong Microwave Absorption. Huang M; Wang L; Pei K; You W; Yu X; Wu Z; Che R Small; 2020 Apr; 16(14):e2000158. PubMed ID: 32182407 [TBL] [Abstract][Full Text] [Related]
6. Metal-organic framework derived hollow CoFe@C composites by the tunable chemical composition for efficient microwave absorption. Wei S; Chen T; Wang Q; Shi Z; Li W; Chen S J Colloid Interface Sci; 2021 Jul; 593():370-379. PubMed ID: 33744545 [TBL] [Abstract][Full Text] [Related]
7. Single Zinc Atoms Anchored on MOF-Derived N-Doped Carbon Shell Cooperated with Magnetic Core as an Ultrawideband Microwave Absorber. Huang M; Wang L; You W; Che R Small; 2021 Jul; 17(30):e2101416. PubMed ID: 34159720 [TBL] [Abstract][Full Text] [Related]
8. Hierarchical Ti Zhang C; Wu Z; Xu C; Yang B; Wang L; You W; Che R Small; 2022 Jan; 18(3):e2104380. PubMed ID: 34914181 [TBL] [Abstract][Full Text] [Related]
9. A comparative study on the dielectric response and microwave absorption performance of FeNi-capped carbon nanotubes and FeNi-cored carbon nanoparticles. Kuang D; Wang S; Hou L; Luo H; Deng L; Chen C; Song M; Mead JL; Huang H Nanotechnology; 2020 Dec; 32(10):. PubMed ID: 33126231 [TBL] [Abstract][Full Text] [Related]
10. Boosted Interfacial Polarization from Multishell TiO Ding J; Wang L; Zhao Y; Xing L; Yu X; Chen G; Zhang J; Che R Small; 2019 Sep; 15(36):e1902885. PubMed ID: 31310052 [TBL] [Abstract][Full Text] [Related]
11. Ultralight Three-Dimensional Hierarchical Cobalt Nanocrystals/N-Doped CNTs/Carbon Sponge Composites with a Hollow Skeleton toward Superior Microwave Absorption. Yang N; Luo ZX; Zhu GR; Chen SC; Wang XL; Wu G; Wang YZ ACS Appl Mater Interfaces; 2019 Oct; 11(39):35987-35998. PubMed ID: 31496213 [TBL] [Abstract][Full Text] [Related]
12. Porous magnetic carbon CoFe alloys@ZnO@C composites based on Zn/Co-based bimetallic MOF with efficient electromagnetic wave absorption. Kong M; Liu X; Jia Z; Wang B; Wu X; Wu G J Colloid Interface Sci; 2021 Dec; 604():39-51. PubMed ID: 34261018 [TBL] [Abstract][Full Text] [Related]
13. The enhanced microwave absorption property of CoFe(2)O(4) nanoparticles coated with a Co(3)Fe(7)-Co nanoshell by thermal reduction. Xi L; Wang Z; Zuo Y; Shi X Nanotechnology; 2011 Jan; 22(4):045707. PubMed ID: 21169659 [TBL] [Abstract][Full Text] [Related]
14. Hierarchical and Porous Structures of Carbon Nanotubes-Anchored MOF Derivatives Bridged by Carbon Nanocoils as Lightweight and Broadband Microwave Absorbers. Zuo X; Zhang H; Zhou C; Zhao Y; Huang H; Wen N; Sun C; Fan Z; Pan L Small; 2023 Sep; 19(36):e2301992. PubMed ID: 37127857 [TBL] [Abstract][Full Text] [Related]
15. 3D Seed-Germination-Like MXene with In Situ Growing CNTs/Ni Heterojunction for Enhanced Microwave Absorption via Polarization and Magnetization. Li X; You W; Xu C; Wang L; Yang L; Li Y; Che R Nanomicro Lett; 2021 Jul; 13(1):157. PubMed ID: 34279760 [TBL] [Abstract][Full Text] [Related]
16. Enhanced microwave absorption performance from abundant polarization sites of ZnO nanocrystals embedded in CNTs via confined space synthesis. Li X; Wang L; You W; Li X; Yang L; Zhang J; Wang M; Che R Nanoscale; 2019 Nov; 11(46):22539-22549. PubMed ID: 31746897 [TBL] [Abstract][Full Text] [Related]
17. Confined Magnetic-Dielectric Balance Boosted Electromagnetic Wave Absorption. Wang L; Huang M; Qian X; Liu L; You W; Zhang J; Wang M; Che R Small; 2021 Jul; 17(30):e2100970. PubMed ID: 34145736 [TBL] [Abstract][Full Text] [Related]
18. Controlled formation of multiple core-shell structures in metal-organic frame materials for efficient microwave absorption. Jiang R; Wang Y; Wang J; He Q; Wu G J Colloid Interface Sci; 2023 Oct; 648():25-36. PubMed ID: 37295367 [TBL] [Abstract][Full Text] [Related]
19. Fabrication of flower-like CoFe/C composites derived from ferrocene-based metal-organic frameworks: an Wang X; Zhang X; Lu J; Liu Z Nanoscale; 2024 Oct; 16(40):18952-18961. PubMed ID: 39292146 [TBL] [Abstract][Full Text] [Related]
20. Metal-Organic Framework-Derived Core-Shell Nanospheres Anchored on Fe-Filled Carbon Nanotube Sponge for Strong Wideband Microwave Absorption. Hu Q; Yang R; Yang S; Huang W; Zeng Z; Gui X ACS Appl Mater Interfaces; 2022 Mar; 14(8):10577-10587. PubMed ID: 35188369 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]